

Page 1 of 127

Report no. 190430035GZU-001

TEST REPORT EN 50549-1:2019

Requirements for generating plants to be connected in parallel with distribution networks Part 1: Connection to a LV distribution network - Generating

plants up to and including Type B

Total number of pages...... 127 pages

Testing Laboratory Intertek Testing Services Shenzhen Ltd. Guangzhou Branch

Address...... Block E, No.7-2 Guang Dong Software Science Park, Caipin Road,

Guangzhou Science City, GETDD, Guangzhou, China

Testing location/ address Same as above

Tested by (name + Jason Fu

signature).....: Technical Team Leader

Approved by (+ signature) Tommy Zhong

Technical Manager

Applicant's name Shenzhen SOFAR SOLAR Co., Ltd.

Community, XinAn Street, BaoAn District, Shenzhen, China

Jason Tu Jonney

Test specification:

Standard EN 50549-1: February 2019

Test procedure...... Type approval for type B

Non-standard test N/A

method....:

Test Report Form No. EN 50549-1a

Test Report Form(s) Originator..... Intertek Guangzhou

Master TRF..... Dated 2019-05

This publication may be reproduced in whole or in part for non-commercial purposes as long as Intertek is acknowledged as copyright owner and source of the material. Intertek takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Solar Grid-tied Inverter

Trade Mark 5 FAR

Manufacturer..... Same as Applicant

Model/Type reference SOFAR 20000TL-G2, SOFAR 25000TL-G2,

SOFAR 30000TL-G2, SOFAR 33000TL-G2

Page 2 of 127

Report no	. 190430035GZU-001
-----------	--------------------

Ratings	Model	SOFAR 20000TL- G2	SOFAR 25000TL- G2	SOFAR 30000TL- G2	SOFAR 33000TL- G2
	Max. DC input Voltage		1100)Vdc	
	Operating MPPT voltage range		230Vdc – 960Vdc		
	PV Isc	30A*2	35A*2	37.5A*2	37.5A*2
	Max.input current	24A/24A	28A/28A	30A/30A	30A/30A
	Nominal AC output Power	20000W	25000W	30000W	33000W
	Max.Output Power	22000VA	27500VA	33000VA	36300VA
	Nominal output voltage	3/N/PE 230Vac/400Vac			
	Nominal output Frequency	50Hz			
	Power factor range		0.8Leading -	- 0.8 lagging	
	Safety level		Cla	ss I	
	Ingress Protection		IP	65	
	Operation Ambient Temperature		-25°C -	+60°C	
	Software version		V2.	.20	

Page 3 of 127

Report no. 190430035GZU-001

Summary of testing:

Tests performed (name of test and test clause):

EN 50549-1	Test Description
4.4.2	Operating frequency range
4.4.3	Minimal requirements for active power delivery at underfrequency
4.4.4	Continuous voltage operation range
4.5.2	Rate of change of frequency (ROCOF)
4.5.3	UVRT
4.5.4	OVRT
4.6.1	Power response to over frequency
4.6.2	Power response to under frequency
4.7.2.2	Q Capabilities (Power Factor) Q(U) Capabilities
4.7.2.3.3	Q Control. Voltage related control mode
4.7.2.3.4	Q Control Power related control modes
4.7.3 4.7.4	Voltage control by active power
4.7.4	Zero current mode
4.8	Harmonic emissions Flicker and voltage fluctuations DC injection
4.9.3	Interface protection
4.9.4.2	Islanding
4.10.2	Reconnection after tripping
4.10.3	Starting to generate electrical power
4.11	Active power reduction by setpoint and Ceasing active power (Logic interface)
4.13	Single fault tolerance of interface protection and interface switch

Remark: for all clauses, the model SOFAR 33000TL-G2 is type tested.

Testing location:

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch

Block E, No.7-2 Guang Dong Software Science Park, Caipin Road, Guangzhou Science City, GETDD, Guangzhou, China

Page 4 of 127

Report no. 190430035GZU-001

Copy of marking plate

Solar Grid-tied Inverter

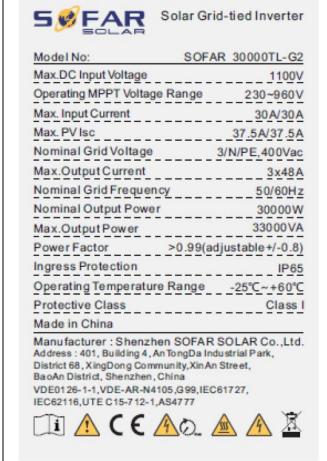
Model No:	SOFAR 20000TL-G2
Max.DC Input Voltage	1100V
Operating MPPT Voltage Ran	nge 230~960V
Max. Input Current	24A/24A
Max. PV Isc	30A/30A
Nominal Grid Voltage	3/N/PE,400Vac
Max.Output Current	3x32A
Nominal Grid Frequency	50/60Hz
Nominal Output Power	20000W
Max.Output Power	22000VA
PowerFactor >0	.99(adjustable+/-0.8)
Ingress Protection	IP65
Operating Temperature Ra	nge -25°C~+60°C
Protective Class	Class I
Made in China	

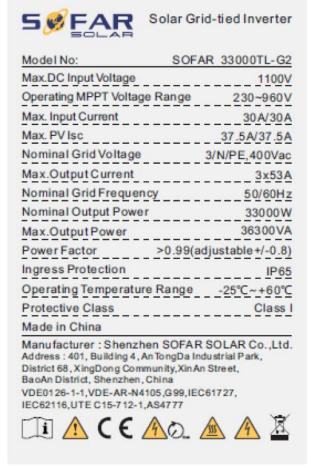
Manufacturer: Shenzhen SOFAR SOLAR Co., Ltd. Address: 401, Building 4, An TongDa Industrial Park, District 68, XingDong Community, Xin An Street, BaoAn District, Shenzhen, China VDE0126-1-1, VDE-AR-N4105, G99, IEC61727, IEC62116,UTE C15-712-1,AS4777

Model No:	SOFAR 25000TL-G2
Max.DC Input Voltage	1100V
Operating MPPT Voltage Ra	nge 230~960V
Max. Input Current	28A/28A
Max. PV Isc	35A/35A
Nominal Grid Voltage	3/N/PE,400Vac
Max.Output Current	3x40A
Nominal Grid Frequency	50/60Hz
Nominal Output Power	25000W
Max.Output Power	27500VA
Power Factor >0	.99(adjustable +/-0.8)
Ingress Protection	IP65
Operating Temperature Ra	nge -25°C~+60°C
Protective Class	Class I
Made in China	

Manufacturer: Shenzhen SOFAR SOLAR Co., Ltd. Address: 401, Building 4, An TongDa Industrial Park, District 68, XingDong Community, Xin An Street, BaoAn District, Shenzhen, China VDE0126-1-1, VDE-AR-N4105, G99, IEC61727,

IEC62116,UTE C15-712-1,AS4777





Page 5 of 127

Report no. 190430035GZU-001

Note:

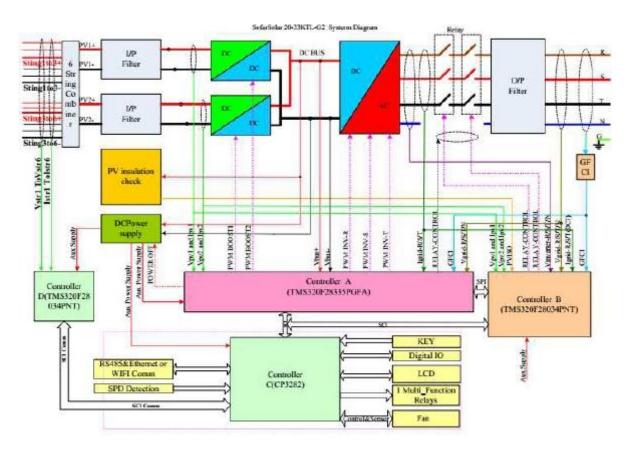
- 1. The above markings are the minimum requirements required by the safety standard. For the final production samples, the additional markings which do not give rise to misunderstanding may be added.
- 2. Label is attached on the side surface of enclosure and visible after installation
- 3. The other model labels are identical with label above, except the model name and rating.

Page 6 of 127

Report no. 190430035GZU-001

Test item particulars:				
Temperature range				
AC Overvoltage category	OVC I	OVC II	⊠ OVC III	OVC IV
DC Overvoltage category	OVC I	⊠ OVC II		OVC IV
IP protection class				
Possible test case verdicts:				
- test case does not apply to the test object:	N/A (Not ap	plicable)		
- test object does meet the requirement:	P (Pass)			
- test object does not meet the requirement:	F (Fail)			
Testing:				
Date of receipt of test item:	30 April 201	9		
Date (s) of performance of tests:	07 Oct 2019	9 – 01 Dec 20	19	
General remarks:				
The test results presented in this report relate only to the This report shall not be reproduced, except in full, witho "(see Enclosure #)" refers to additional information applicate appended table)" refers to a table appended to the	ut the written pended to th	approval of t	he Issuing tes	ting laboratory.
When determining for test conclusion, measurement This report is for the exclusive use of Intertek's Clier between Intertek and its Client. Intertek's responsible conditions of the agreement. Intertek assumes no lie accordance with the agreement, for any loss, expend Only the Client is authorized to permit copying or dialong and the Intertek name or one of its marks for product or service must first be approved in writing this report are relevant only to the sample tested. The product, or service is or has ever been under an Intertek test report only allows to be revised only standard or regulation was withdrawn or invalid.	nt and is pro lity and liab ability to an se or damag stribution of the sale or a by Intertek. his report by ertek certifica	ovided pursuality are limit y party, othe ge occasione f this report advertiseme The observa vitself does ration progra	ant to the agreed to the terr r than to the ed by the use and then only nt of the teste ations and teste not imply tha m.	eement ns and Client in of this report. in its entirety. ed material, et results in t the material,

Throughout this report a point is used as the decimal separator.


Page 7 of 127

Report no. 190430035GZU-001

General product information:

The Solar converter is a three-phase type.

The unit is providing EMC filtering at the output toward mains. The unit does not provide galvanic separation from input to output (transformerless). The output is switched off redundant by the high power switching bridge and two relays. This assures that the opening of the output circuit will also operate in case of one error.

The internal control is redundant built. It consists of Main DSP(UC20) and slave DSP(UC73).

The Main DSP(UC20) can control the relays, measures voltage, and frequency, AC current with injected DC, insulation resistance and residual current, In addition it tests the array insulation resistance and the RCMU circuit before each start up.

The slave DSP(UC73) is using for detecting residual current, also can open the relays independently and communicate with Main DSP(UC20).

The unit provides two relays in series on Line conductors. When single-fault applied to one relay, alarm an error code in display panel, another redundant relay provides basic insulation maintained between the PV array and the mains. All the relays are tested before starting up. Both controllers (Main DSP(UC20), Slave DSP(UC73) can open the relays

The product was tested on:

Hardware version: V1.00 Software version: V2.20

Model differences:

The models SOFAR 20000TL-G2, SOFAR 25000TL-G2, SOFAR 30000TL-G2 and SOFAR 33000TL-G2 are almost identical in hardware except the shown in the following table and the output power derated by software.

Page 8 of 127

Report no. 190430035GZU-001

	The difference in hardware			
Item	SOFAR 20000TL-G2	SOFAR 25000TL-G2	SOFAR 30000TL-G2 /	
			SOFAR 33000TL-G2	
Number of PV	2+2		3+3	
terminal				
Number of BUS	8 capacitors:	s: 550V/110µF 10 capacitors: 550V/110µF		
capacitance	2 capacitors:	s: 1100V/40µF 4 capacitors: 1100V/40µF		
INV inductance	785µH		735µH	
Combiner board	Not the board	Have the board		
External fan	Not the board	2	3	
Relay of output board	6pcs T9V\	V1K15-12S	3pcs AZSR250-2AE-12D	

The tests had been performed on the SOFAR 33000TL-G2 is valid for the SOFAR 20000TL-G2, SOFAR 25000TL-G2, SOFAR 30000TL-G2.

Factory information:

Dongguan SOFAR SOLAR Co., Ltd

1F-6F, Building E, No.1 JinQi Road, Bihu Industrial Park, Wulian Village, Fenggang Town, Dongguan City

Page 9 of 127

	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict

4	Requirements on generating plants		Р
4.1	General	This report is only evaluated and tested for generating unit; The generating plant incorporated with the generating unit shall further consider this clause and subclause.	N/A
4.2	Connection scheme	Shall consider in final PGS	N/A
4.3	Choice of switchgear		Р
4.3.1	General Switches shall be chosen based on the characteristics of the power system in which they are intended to be installed. For this purpose, the short circuit current at the installation point shall be assessed, taking into account, <i>inter alia</i> , the short circuit current contribution of the generating plant.	The short circuit current at the installation point shall be considered in final PGS	Р
4.3.2	Interface switch Switches shall be power relays, contactors or mechanical circuit breakers each having a breaking and making capacity corresponding to the rated current of the generating plant and corresponding to the short circuit contribution of the generating plant. The short-time withstand current of the switching devices shall be coordinated with rated short circuit power at the point of connection. In case of loss of auxiliary supply power to the switchgear, a secure disconnection of the switch is required immediately. Where means of isolation (according to HD 60364-5-551) is not required to be accessible to the DSO at all times, automatic disconnection with single fault tolerance according to 4.13 shall be provided. The function of the interface switch might be combined with either the main switch or the generating unit switch in a single switching device. In case of a combination, the single switching device shall be compliant to the requirements of both, the interface switch and the combined main switch or generating unit switch. As a consequence, at least two switches in series shall be present between any generating unit and the POC.	The interface switch is constructed of redundancy, made up of two series relays and power and control separately. The EUT is a PV inverter, further evaluation refer to EN 62109–1 and EN 62109–2 with respect to the interface switch.	P

4.4	Normal operating range	Р
4.4.1	General Generating plants when generating power shall have the capability to operate in the operating ranges specified below regardless of the topology and the settings of the interface protection.	Р

	Page 10 of 127	Report no. 190430035	5GZU-001
	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
4.4.2	Operating frequency range The generating plant shall be capable of operating continuously when the frequency at the point of connection stays within the range of 49 Hz to 51 Hz.	(See appended table 4.4.2)	Р
	In the frequency range from 47 Hz to 52 Hz the generating plant should be capable of operating until the interface protection trips. Therefore, the generating plant shall at least be capable of operating in the frequency ranges, for the duration and for the minimum requirement as indicated in Table 1. Respecting the legal framework, it is possible that for some synchronous areas more stringent time periods and/or frequency ranges will be required by the DSO and the responsible party. Nevertheless, they are expected to be within the boundaries of the stringent requirement as indicated in Table 1 unless producer, DSO, TSO and responsible party agree on wider frequency ranges and longer		
4.4.3	Minimal requirement for active power delivery at underfrequency A generating plant shall be resilient to the reduction of frequency at the point of connection while reducing the maximum active power as little as possible. The admissible active power reduction due to underfrequency is limited by the full line in Figure 5 and is characterized by a maximum allowed reduction rate of 10 % of P _{max} per 1 Hz for frequencies below 49,5 Hz. It is possible that a more stringent power reduction characteristic is required by the responsible party. Nevertheless this requirement is expected to be limited to an admissible active power reduction represented by the dotted line in Figure 5 which is characterised by a reduction rate of 2 % of the maximum power P _{max} per 1 Hz for frequencies below 49 Hz. If any technologies intrinsic design or ambient conditions have influence on the power reduction behaviour of the system, the manufacturer shall specify at which ambient conditions the requirements can be fulfilled and eventual limitations. The information can be provided in the format of a graph showing the intrinsic behaviour of the generating unit for example at different ambient conditions. The power reduction and the ambient conditions shall comply with the specification given by the responsible party. If the generating unit does not meet the power reduction at the specified ambient conditions, the producer and the responsible party shall agree on acceptable ambient conditions.	(See appended table 4.4.3)	P

Page 11 of 127

	Page 11 of 127	кероп по. 190430035	JG20-001	
EN 50549-1:2019				
Clause	Requirement - Test	Result - Remark	Verdict	
4.4.4	Continuous operating voltage range When generating power, the generating plant shall be	(See appended table 4.4.4)	Р	
	capable of operating continuously when the voltage at the point of connection stays within the range of 85 % Un to 110 % Un. Beyond these values the under and over voltage ride through immunity limits as specified in clause 4.5.3 and 4.5.4 shall apply.			
	In case of voltages below U _n , it is allowed to reduce the apparent power to maintain the current limits of the generating plant. The reduction shall be as small as technically feasible. For this requirement all phase to phase voltages and in case a neutral is connected, additionally all phase to neutral voltages shall be evaluated.			
4.5	Immunity to disturbances		Р	
4.5.1	General		Р	
	In general, generating plants should contribute to overall power system stability by providing immunity towards dynamic voltage changes unless safety standards require a disconnection. The following clauses describe the required immunity for generating plants taking into account the connection technology of the generating modules. The following withstand capabilities shall be provided regardless of the settings of the interface protection.			
4.5.2	Rate of change of frequency (ROCOF) immunity	(See appended table 4.5.2)	Р	
	ROCOF immunity of a power generating plant means that the generating modules in this plant stay connected with the distribution network and are able to operate when the frequency on the distribution network changes with a specified ROCOF. The generating units and all elements in the generating plant that might cause their disconnection or impact their behaviour shall have this same level of immunity.	For 2Hz/s		
	The generating modules in a generating plant shall have ROCOF immunity for a ROCOF equal or exceeding the value specified by the responsible party. If no ROCOF immunity value is specified, the following ROCOF immunity shall apply, making distinction between generating technologies: • Non-synchronous generating technology: at least 2 Hz/s • Synchronous generating technology: at least 1 Hz/s			
	The ROCOF immunity is defined with a sliding measurement window of 500 ms.			
4.5.3	Under-voltage ride through (UVRT)		Р	

roun quanty.	Page 12 of 127	Report no. 19043003	35GZU-001
	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
4.5.3.1	General Generating modules classified as type B modules according to COMMISSION REGULATION 2016/631 shall comply with the requirements of 4.5.3.2 and 4.5.3.3. Generating modules classified as type A and smaller according to COMMISSION REGULATION 2016/631 should comply with these requirements. The actual behaviour of type A modules and smaller shall be specified in the connection agreement. The requirements apply to all kinds of faults (1ph, 2ph and 3ph).		P
4.5.3.2	Generating plant with non-synchronous generating technology Generating modules shall be capable of remaining connected to the distribution network as long as the voltage at the point of connection remains above the voltage-time curve of Figure 6. The voltage is relative to Un. The smallest phase to neutral voltage, or if no neutral is present, the smallest phase to phase voltage shall be evaluated. The responsible party may define a different UVRT characteristic. Nevertheless, this requirement is expected to be limited to the most stringent curve as indicated in Figure 6. This means that the whole generating module has to comply with the UVRT requirement. This includes all elements in a generating plant: the generating units and all elements that might cause their disconnection. For the generating unit, this requirement is considered to be fulfilled if it stays connected to the distribution grid as long as the voltage at its terminals remains above the defined voltage-time diagram. After the voltage returns to continuous operating voltage range, 90 % of pre-fault power or available power whichever is the smallest shall be resumed as fast as possible, but at the latest within 1 s unless the DSO and the responsible party requires	(See appended table 4.5.3)	P

4.5.3.3

another value.

Generating plant with synchronous generating technology

N/A

iotai Quanty.	Page 13 of 12	7 Report no. 1904300	35GZU-001
	EN 50549-1:2	2019	
Clause	Requirement - Test	Result - Remark	Verdict
4.5.4	Over-voltage ride through (OVRT) Generating modules, except for micro-generati plants, shall be capable of staying connected to distribution network as long as the voltage at the of connection remains below the voltage-time curve of Figure 8. The highest phase to neutral voltage or if no new present the highest phase to phase voltage shall be evaluated. This means that not only the generating units so comply with this OVRT requirement but also all elements in a generating plant that might cause disconnection	o the e point eutral is hall	P
4.6	Active response to frequency deviation		Р
4.6.1	Power response to overfrequency Generating plants shall be capable of activating power response to overfrequency at a programmable frequency threshold f ₁ at least between and including 50,2 Hz and 52 Hz with programmable droop in a range of at least s=2 s=12 %. The droop reference is P _{ref} . Unless defined differently by the responsible party: • P _{ref} =P _{max} , in the case of synchronous generative technology and electrical energy storage systems. • P _{ref} =P _M , the actual AC output power at the insimal when the frequency reaches the threshold f ₁ , in the case of all other non-synchronous generative technology The power value calculated according to the dramaximum power limit. If e.g. the available primary power decreases during a high frequer period below the power defined by the droop function, lower power values are permitted. The generating plant shall be capable of activative power response to overfrequency as fast technically feasible with an intrinsic dead time to shall be as short as possible with a maximum of and with a step response time of maximum 30 unless another value is defined by the relevant An intentional delay shall be programmable to a the dead time to a value between the intrinsic	a % to ing tant ng oop is ncy ting t as hat of 2 s s, party.	P

dead time and 2 s.

Page 14 of 127

	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
	After activation, the active power frequency response shall use the actual frequency at any time, reacting to any frequency increase or decrease according to the programmed droop with an accuracy of ± 10 % of the nominal power (see Figure 9). The resolution of the frequency measurement shall be ± 10 mHz or less. The accuracy is evaluated with a 1 min average value. At POC, loads if present in the producer's network might interfere with the response of the generating plant. The effect of loads is not considered for the evaluation of the accuracy, only the behaviour of the generating plant is relevant.		P
	Generating plants reaching their minimum regulating level shall, in the event of further frequency increase, maintain this power level constant unless the DSO and the responsible party requires to disconnect the complete plant or if the plant consists of multiple units by disconnecting individual units. The active power frequency response is only deactivated if the frequency falls below the frequency threshold f1. If required by the DSO and the responsible party an additional deactivation threshold frequency f _{stop} shall be programmable in the range of at least 50 Hz to f1. If f _{stop} is configured to a frequency below f1 there shall be no response according to the droop in case of a frequency decrease (see Figure 10). The output power is kept constant until the frequency falls below f _{stop} for a configurable time t _{stop} .		P
	If at the time of deactivation of the active power frequency response the momentary active power PM is below the available active power PA, the active power increase of the generating plant shall not exceed the gradient defined in 4.10.2. Settings for the threshold frequency f ₁ , the droop and the intentional delay are provided by the DSO and the responsible party. If no settings are provided, the default settings in Table 2 should be applied.		P
	The enabling and disabling of the function and its settings shall be field adjustable and means shall be provided to protect these from unpermitted interference (e.g. password or seal) if required by the DSO and the responsible party.	The enabling and disabling can be access by communication interface	Р

Total Quality.	Assured.	Page 15 of 127	Report no. 19043003	35GZU-001
		EN 50549-1:2019		
Clause	Requirement - Test		Result - Remark	Verdict
	party: • the generating units shall frequencies, ideally uniform between the frequency thre • in case the frequency decigenerating unit shall start if once the frequency falls be that initiated the disconnection 4.10 do not apply; • the randomization shall e changing the threshold over level by choosing different a plant, or on distribution s DSO specifies a specific threshold over level by choosing different a plant, or on distribution s	allowed for generating a DSO and the responsible disconnect at randomized ally distributed eshold f1 and 52 Hz; creases again, the ats reconnection procedure slow the specific frequency ation; for this conditions described in the set unit level by the street or on plant values for each unit within system level if the are shold for each plant or		P
	unit connected to its distrib EES units that are in charg frequency passes the three the charging power below below f1. Storage units sho charging power according case the maximum chargir or to prevent any other risk equipment, a reduction of opermitted.	ling mode at the time the shold f₁ shall not reduce PM until frequency returns ould increase the to the configured droop. In a capacity is reached to finjury or damage of		P
4.6.2	Power response to underfined EES units shall be capable response to underfrequency units/plants should be capable response to underfrequency is provided plant/unit, the function shall requirements below. Active power response to underfined in the following provided when all of the following power Pmax; • when generating, the generative power below its maximum power Pmax; • when generating, the generative power below the available power below the available power Pa; • the voltages at the point of generating plant are within voltage range; and • when generating, the generating the case of EES units, a response to underfrequency charging and generating means the capable provided in the case of EES units, a response to underfrequency charging and generating means the capable provided in the case of EES units, a response to underfrequency charging and generating means the capable provided in the case of EES units, a response to underfrequency charging and generating means the capable power power provided when generating means the capable power po	e of activating active power by. Other generating able of activating active equency. If active power ded by a generating all comply with the underfrequency shall be allowing conditions are derating unit is operating at a cimum active derating unit is operating at a connection of the allowing unit is operating at a connection of the active of connection of the active operating unit is operating derating unit is operating active operating unit is operating active power frequency by shall be provided in	(See appended table 4.6.2)	P

Page 16 of 127

	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
	The active power response to underfrequency shall be delivered at a programmable frequency threshold f ₁ at least between and including 49,8 Hz and 46,0 Hz with a programmable droop in a range of at least 2 % to 12 %. The droop reference P _{ref} is P _{max} . If the available primary power or a local set value increases during an underfrequency period above the power defined by the droop function, higher power values are permitted. The power value calculated according to the droop is therefore a minimum limit.		Р
	The generating unit shall be capable of activating active power response to underfrequency as fast as technically feasible with an intrinsic dead time that shall be as short as possible with a maximum of 2 s and with a step response time of maximum 30 s unless another value is defined by the relevant party. An intentional initial delay shall be programmable to adjust the dead time to a value between the intrinsic dead time and 2 s.		
	After activation, the active power frequency response shall use the actual frequency at any time, reacting to any frequency increase or decrease according to the programmed droop with an accuracy of ± 10 % of the nominal power. The accuracy is evaluated with a 1 min average value. The resolution of the frequency measurement shall be ± 10 mHz or less. At POC loads, if present in the producer's network, might interfere with the response of the generating plant. The effect of loads is not considered for the evaluation of the accuracy, only the behaviour of the generating plant is relevant.		Р
	Generating modules reaching any of the conditions above during the provision of active power frequency response shall, in the event of further frequency decrease, maintain this power level constant. The active power frequency response is only deactivated if the frequency increases above the frequency threshold f ₁ .		Р
	Settings for the threshold frequency f ₁ , the droop and the intentional delay are defined by the DSO and the responsible party, if no settings are provided, the function shall be disabled.		Р
	The activation and deactivation of the function and its settings shall be field adjustable and means shall be provided to protect these from unpermitted interference (e.g. password or seal) if required by the DSO and the responsible party.		Р
4.7	Power response to voltage changes		Р

Page 17 of 127

EN 50549-1:2019

Report no.	190430035GZU-00)1

Clause	Requirement - Test	Result - Remark	Verdict
4.7.1	General When the contribution to voltage support is required		Р
	by the DSO and the responsible party, the generating plant shall be designed to have the capability of managing reactive and/or active power generation according to the requirements of this clause.		
4.7.2	Voltage support by reactive power		Р
4.7.2.1	General Generating plants shall not lead to voltage changes out of acceptable limits. These limits should be defined by national regulation. Generating units and plants shall be able to contribute to meet this requirement during normal network operation. Throughout the continuous operating frequency (see 4.4.2) and voltage (see 4.4.4) range, the generating plant shall be capable to deliver the requirements stipulated below. Outside these ranges, the generating plant shall follow the requirements as good as technically feasible although there is no specified accuracy required.		P
4.7.2.2	Capabilities	(See appended table 4.7.2.2)	Р
	Unless specified differently below, for specific generating technologies, generating plants shall be able to operate with active factors as defined by the DSO and the responsible party from active factor = 0,90underexcited to active factor= 0,90overexcited The reactive power capability shall be evaluated at		
	the terminals of the/each generating unit		
	CHP generating units with a capacity \leq 150 kVA shall be able to operate with active factors as defined by the DSO from $\cos \varphi = 0.95_{\text{underexcited}}$ to $\cos \varphi = 0.95_{\text{overexcited}}$ Generating units with an induction generator coupled directly to the grid and used in generating plants above micro generating level, shall be able to operate with active factors as defined by the DSO from $\cos \varphi = 0.95_{\text{underexcited}}$ to $\cos \varphi = 1$ at the terminals of the unit. Deviating from 4.7.2.3 only the $\cos \varphi$ set point mode is required. Deviating from the accuracy requirements below, the accuracy is only required at active power PD.		N/A
	Generating units with an induction generator coupled directly to the grid and used in micro generating plants shall operate with an active factor above 0,95 at the terminals of the generating unit. A controlled voltage support by reactive power is not required from this technology.		N/A

Page 18 of 127

	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
	Generating units with linear generators, coupled directly and synchronously to the grid shall operate with an active factor above 0,95 at the terminals of the generating unit, and therefore a controlled voltage support by reactive power is not required from this technology.		N/A
	In case of different generating technologies with different requirements in one generating plant, each unit shall provide voltage support by reactive power as required for its specific technology. A compensation of one technology to reach the general plant requirement is not expected. The DSO and the responsible party may relax the above requirements. This relaxation might be general or specific for a certain generating plant or generating technology.		N/A
	All involved parties can expect to have access to information documenting the actual choices regarding active power capabilities relative to reactive power requirements and related to the power rating in the operating voltage range (see further in this clause). A P-Q Diagram shall be included in the product documentation of a generating unit. When operating above the apparent power threshold Smin equal to 10 % of the maximum apparent power Smax or the minimum regulating level of the generating plant, whichever is the higher value, the reactive power capability shall be provided with an accuracy of ± 2 % Smax. Up to this apparent power threshold Smin, deviations above 2 % are permissible; nevertheless the accuracy shall always be as good as technically feasible and the exchange of uncontrolled reactive power in this low-power operation mode shall not exceed 10 % of the maximum apparent power Smax. At POC loads, if present in the producer's network might interfere with the response of the generating plant. The effect of loads is not considered for the evaluation of the accuracy, only the behaviour of the generating plant is relevant. For generating units with a reactive power capability according Figure 12 the reactive power capability at active power PD shall be at least according Figure 13. For generating units with a reduced reactive power capability Figure 13 is only applicable up to the maximum reactive power capability.	(See appended table 4.7.2.2)	P
4.7.2.3	Control modes		Р

Total Quality.	Assured. Page 19 of 127	Report no. 190430035	GZU-001
	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
4.7.2.3.1	Where required, the form of the contribution to voltage control shall be specified by the DSO. The control shall refer to the terminals of the generating units The generating plant/unit shall be capable of operating in the control modes specified below within the limits specified in 4.7.2.2. The control modes are exclusive; only one mode may be active at a time. • Q setpoint mode • Q (U) • Cos φ setpoint mode • Cos φ (P) For mass market products, it is recommended to implement all control modes. In case of site specific generating plant design, only the control modes required by the DSO need to be implemented. The configuration, activation and deactivation of the control modes shall be field adjustable. For field adjustable configurations and activation of the active control mode, means shall be provided to protect the settings from unpermitted interference (e.g. password or seal) if required by the DSO. Which control modes are available in a product and how they are configured shall be stated in the product documentation.		Р
4.7.2.3.2	Setpoint control modes Q setpoint mode and $\cos \phi$ setpoint mode control the reactive power output and the $\cos \phi$ of the output respectively, according to a set point set in the control of the generating plant/unit. In the case of change of the set point local or by remote control the settling time for the new set point shall be less than one minute.	(See appended table 4.7.2.2)	P
4.7.2.3.3	Voltage related control mode The voltage related control mode Q (U) controls the reactive power output as a function of the voltage. There is no preferred state of the art for evaluating the voltage. Therefore it is the responsibility of the generating plant designer to choose a method. One of the following methods should be used: • the positive sequence component of the fundamental; • the average of the voltages measured independently for each phase to neutral or phase to phase; • phase independently the voltage of every phase to determine the reactive power for every phase.	Method 2 used	Р

Page 20 of 127

	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
	For voltage related control modes, a characteristic with a minimum and maximum value and three connected lines according to Figure 16 shall be configurable. In addition to the characteristic, further parameters shall be configurable: • The dynamics of the control shall correspond with a first order filter having a time constant that is configurable in the range of 3 s to 60 s.	(See appended table 4.7.2.3.3)	Р
	To limit the reactive power at low active power two methods shall be configurable: • a minimal cos φ shall be configurable in the range of 0-0,95; • two active power levels shall be configurable both at least in the range of 0 % to 100 % of P _D . The lock-in value turns the Q(U) mode on, the lock-out value turns Q(U) off. If lock-in is larger than lock-out a hysteresis is given. See also Figure 14. The static accuracy shall be in accordance with 4.7.2.2. The dynamic accuracy shall be in accordance with Figure 15 with a maximum tolerance of +/- 5% of P _D plus a time delay of up to 3 seconds deviating from an ideal first order filter response.		P
4.7.2.3.4		(See appended table 4.7.2.3.4)	Р

Page 21 of 127

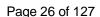
	rage 21 of 127	Report no. 190430033	020 00.
	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
4.7.3	Voltage related active power reduction In order to avoid disconnection due to overvoltage protection (see 4.9.2.3 and 4.9.2.4), generating plants/units are allowed to reduce active power output as a function of this rising voltage. The final implemented logic can be chosen by the manufacturer. Nevertheless, this logic shall not cause steps or oscillations in the output power. The power reduction caused by such a function may not be faster than an equivalent of a time constant tau = 3 s (= 33%/s at a 100% change). The enabling and disabling of the function shall be field adjustable and means have to be provided to protect the setting from unpermitted interference (e.g. password or seal) if required by the DSO.	This function is chosen by manufacturer	Р
4.7.4	Short circuit current requirements on generating plants		Р
4.7.4.1	General The following clauses describe the required short circuit current contribution for generating plants taking into account the connection technology of the generating modules. Generating modules classified as type B modules according to COMMISSION REGULATION 2016/631 shall comply with the requirements of 4.7.4.2 and 4.7.4.3. Generating modules classified as type A according to COMMISSION REGULATION 2016/631 should comply with these requirements. The actual behaviour of type A modules shall be specified in the connection agreement.		Р
4.7.4.2	Generating plant with non-synchronous generating t	echnology	Р
4.7.4.2.1	Voltage support during faults and voltage steps In general no voltage support during faults and voltage steps is required from generating plants connected in LV distribution networks as the additional reactive current is expected to interfere with grid protection equipment. If the responsible party requires voltage support during faults and voltage steps for generating plants of type B connected to LV distribution grids, the clause 4.7.4 of EN 50549-2 applies.	Only EN 50549-1 applies, if required by the responsible party for additional reactive current, the EN 50549-2 shall be applied.	Р

Total Quality.	Assured.	Page 22 of 127	Report no. 190430035	GZU-001
		EN 50549-1:2019	_	
Clause	Requirement - Test		Result - Remark	Verdict
4.7.4.2.2	generating technology If UVRT capability (see 4.5.3) the requirements of 4.5, generating to reduce their currence technically feasible down to or rated current when the voltage voltage range. Generating unfed induction machine can on sequence current below 10 % Negative sequence current sluduring unbalanced faults. In creduction is not sufficient, the suitable interface protection is The static voltage range shall 20 % to 100 % of Unfor the undervoltage boundary. The default setting for the undervoltage boundary voltage or if no neutral is presphase voltage shall be evaluating into the voltage range, 90% of available power, whichever is resumed as fast as possible, according to 4.5.3 and 4.5.4. All described settings are defresponsible party. If no setting the function shall be disabled The enabling and disabling an field adjustable and means have password or seal) if required	is provided additional to erating units nverter shall have the ent as fast as or below 10 % of the e is outside of a static sits based on a doubly ally reduce the positive of the rated current. It is best to current the description of the rated current to DSO should choose settings. I be adjustable from andervoltage boundary Un for the overvoltage is shall be 50% of Un and 120% of Un for the obase to neutral sent each phase to neutral sent each phase to ated. At voltage re-entry of pre-fault power or the smallest, shall be but at the latest ined by the DSO and the gs are provided, and the settings shall be ave to be provided itted interference (e.g. by the DSO.	The test is performed together with the clause 4.5.3 and 4.5.4 Default setting for testing.	P
4.7.4.2.3	In general no voltage support voltage steps is required from connected in LV distribution radditional reactive current is grid protection equipment. If trequires voltage support during steps for generating plants of	during faults and generating plants networks as the expected to interfere with the responsible partying faults and voltage		N/A
	distribution grids, the clause			

applies.

Page 23 of 127

	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
4.7.4.3	Generating plant with synchronous generating technology - Synchronous generator based units In general no voltage support during faults and voltage steps is required from generating plants connected in LV distribution networks as the additional reactive current is expected to interfere with grid protection equipment. If the responsible party requires voltage support during faults and voltage steps for generating plants of type B connected to LV distribution grids, the clause 4.7.4 of EN50549-2 applies.		N/A
4.8	EMC and power quality Similar to any other apparatus or fixed installation, generating units shall comply with the requirements on electromagnetic compatibility established in Directive 2014/30/EU or 2014/53/EU, whichever applies. EMC limits and tests, described in EN 61000 series, have been traditionally developed for loads, without taking into account the particularities of generating units, such as their capability to create overvoltages or high frequency disturbances due to the presence of power converters, which were either impossible or less frequent in case of loads.	The units have declared to comply with Directive 2014/30/EU or 2014/53/EU	P
4.9	Interface protection		Р
4.9.1	According to HD 60364-5-551:2010, 551.7.4, means of automatic switching shall be provided to disconnect the generating plant from the distribution network in the event of loss of that supply or deviation of the voltage or frequency at the supply terminals from values declared for normal supply. This automatic means of disconnection has following main objectives: • prevent the power production of the generating plant to cause an overvoltage situation in the distribution network it is connected to. Such overvoltages could result in damages to the equipment connected to the distribution network as well as the distribution network itself; • detect unintentional island situations and disconnect the generating plant in this case. This is contributing to prevent damage to other equipment, both in the producers' installations and the distribution network due to out of phase re-closing and to allow for maintenance work after an intentional disconnection of a section of the distribution network; • assist in bringing the distribution network to a controlled state in case of voltage or frequency deviations beyond corresponding regulation values.		P



rotal Quality.	Assured.	Page 24 of 127	Report no. 190430035	5GZU-001
		EN 50549-1:2019		
Clause	Requirement - Test		Result - Remark	Verdict
	disconnect the generating planetwork in case of faults intergenerating plant. Protection a (short-circuits) shall be coordinetwork protection, according criteria. Protection against e.g. shock and against fire hazard additionally according to HD 6 local requirements; prevent damages to the genincidents (e.g. short circuits) onetwork Interface protections may condamage to the generating unireclosing of automatic reclosing after some hundreds of ms. Ecountries some technologies explicitly required to have an aimmunity level against the corphase reclosing. The type of protection and the operating times depend upon characteristics of the distribut A wide variety of approaches mentioned objectives is used Besides the passive observat frequency other active and paavailable and used to detect is requirements given in this claprovide the necessary functio approaches as well as to give Which functions are available stated in the product docume.	nal to the power gainst internal faults nated with to DSO protection proverload, electric shall be implemented so 364-1 and erating unit due to on the distribution tribute to preventing the due to out-of-phase and which may happen lowever, in some of generating units are appropriate appropriate as equences of out-of-phase appropriate as equences of out-of-phase as ensitivity and the protection and the fon network. To achieve the above throughout Europe, ion of voltage and sive methods are sland situations. The use are intended to as for all known guidance in their use, in a product shall be		P
	The interface protection syster requirements of this European available functions and config comply with the requirements responsible party. In any case shall be understood as the varietechnical capability of the generating to the withheld by the settings (other than the interface protection generating plants, the system and the point of measintegrated into the generating plants with nominal current at may define a threshold above protection system shall be readevice and not integrated into	n Standard, the ured settings shall of the DSO and the e, the settings defined lues for the interface there is a wider eration module, it shall sof the protections ection). The interface protection urement might be units. For generating ove 16 A the DSO which the interface alized as a dedicated	Integrated into the generating units If specified by country requirement, the interface protection shall not integrate	P

Page 25 of 127	Report no. 190430035GZU-001
EN 50549-1:2019	

Clause	Requirement - Test	Result - Remark	Verdict
	to place the protection system as close to the point of connection as possible, to avoid tripping due to overvoltages resulting from the voltage rise within the producer's network; • to allow for periodic field tests. In some countries periodic field tests are not required if the protection system meets the requirements of single fault safety. The interface protection relay acts on the interface switch. The DSO may require that the interface protection relay acts additionally on another switch with a proper delay in case the interface switch fails to operate. In case of failure of the power supply of the interface protection, the interface protection shall trigger the interface switch without delay. An uninterruptible power supply may be required by the DSO, for instance in case of UVRT capability, delay in protection etc. In case of field adjustable settings of threshold and operation time, means shall be provided to protect the settings from unpermitted interference (e.g. password or seal) if required by the DSO.		P
4.9.2	Void		
4.9.3	Requirements on voltage and frequency protection	(See appended table 4.9.3)	Р
4.9.3.1	General Part or all of the following described functions may be required by the DSO and the responsible party. The protection functions shall evaluate at least all phases where generating units, covered by this protection system, are connected to. In case of three phase generating units/plants and in all cases when the protection system is implemented as an external protection system in a three phase power supply system, all phase to phase voltages and, if a neutral conductor is present, all phase to neutral voltages shall be evaluated. The frequency shall be evaluated on at least one of the voltages.		P

Report no. 190430035GZU-001

EN 50549-1:2019 Clause Result - Remark Requirement - Test Verdict If multiple signals (e.g. 3 phase to phase voltages) Ρ are to be evaluated by one protection function, this function shall evaluate all of the signals separately. The output of each evaluation shall be OR connected, so that if one signal passes the threshold of a function, the function shall trip the protection in the specified time. The minimum required accuracy for protection is: • for frequency measurement ± 0,05 Hz; • for voltage measurement ± 1 % of Un. • The reset time shall be ≤50ms • The interface protection relay shall not conduct continuous starting and disengaging operations of the interface protection relay. Therefore a reasonable reset ratio shall be implemented which shall not be zero but be below 2% of nominal value for voltage and below 0,2Hz for frequency. **Undervoltage protection [27]** 4.9.3.2 The protection shall comply with EN 60255-127. The evaluation of the r.m.s. or the fundamental value is allowed Undervoltage protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows. Undervoltage threshold stage 1 [27 <]: • Threshold (0,2-1) U_n adjustable by steps of 0,01 U_n • Operate time (0,1 – 100) s adjustable in steps of 0,1 Undervoltage threshold stage 2 [27 < <]: • Threshold (0,2-1) U_n adjustable by steps of 0,01 U_n • Operate time (0,1-5) s adjustable in steps of 0,05The undervoltage threshold stage 2 is not applicable for micro-generating plants Overvoltage protection [59] Ρ 4.9.3.3 The protection shall comply with EN 60255-127. The evaluation of the r.m.s. or the fundamental value is allowed. Overvoltage protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows. Overvoltage threshold stage 1 [59 >]: • Threshold (1,0-1,2) U_n adjustable by steps of 0,01 • Operate time (0,1 – 100) s adjustable in steps of 0,1 Overvoltage threshold stage 2 [59 > >]: • Threshold (1,0-1,30) U_n adjustable by steps of 0,01 Un • Operate time (0,1-5) s adjustable in steps of 0,05

Page 27 of 127

	EN 50549-1:2019			
Clause	Requirement - Test	Result - Remark	Verdict	
4.9.3.4	Overvoltage 10 min mean protection The calculation of the 10 min value shall comply with		Р	
	the 10 min aggregation of EN 61000-4-30 Class S, but deviating from EN 61000-4-30 as a moving window is used. Therefore the function shall be based on the calculation of the square root of the arithmetic mean of the squared input values over 10 min. The calculation of a new 10 min value at least every 3 s is sufficient, which is then to be compared with the threshold value. • Threshold (1,0 − 1,15) <i>U_n</i> adjustable by steps of 0,01 <i>U_n</i> • Start time ≤ 3s not adjustable • Time delay setting = 0 ms			
4.9.3.5	Underfrequency protection [81 <]		Р	
	Underfrequency protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows. Underfrequency threshold stage 1 [81 <]: • Threshold (47,0 – 50,0) Hz adjustment by steps of 0,1 Hz • Operate time (0,1 – 100) s adjustable in steps of 0,1 s Underfrequency threshold stage 2 [81 < <]:			
	 Threshold (47,0 – 50,0) Hz adjustment by steps of 0,1 Hz Operate time (0,1 – 5) s adjustable in steps of 0,05 			
	In order to use narrow frequency thresholds for islanding detection (see 4.9.3.3) it may be required to have the ability to activate and deactivate a stage by an external signal. The frequency protection shall function correctly in the input voltage range between 20 % <i>U_n</i> and 120 % <i>U_n</i> and shall be inhibited for input voltages of less than 20 % <i>U_n</i> . Under 0,2 U _n the frequency protection is inhibited. Disconnection may only happen based on undervoltage protection.			

rotal Quality	Page 28 of	f 127 Report no. 190	430035GZU-001
	EN 50549	9-1:2019	
Clause	Requirement - Test	Result - Remark	Verdict
4.9.3.6	Overfrequency protection [81 >] Overfrequency protection may be implement two completely independent protection threse each one able to be activated or not. The stadjustment ranges are as follows. Overfrequency threshold stage 1 [81 >]: • Threshold (50,0 - 52,0) Hz adjustment by 90,1 Hz • Operate time (0,1 - 100) s adjustable in stase overfrequency threshold stage 2 [81 > >]: • Threshold (50,0 - 52,0) Hz adjustment by 90,1 Hz • Operate time (0,1 - 5) s adjustable in steps on the input type of the ability to activate and deactivate a an external signal. The frequency protection shall function correction the input voltage range between 20 % Un ar 120 % Un and shall be inhibited for input volless than 20 % Un.	sholds, andard steps of teps of 0,1 steps of 0,05 s for equired to stage by tectly in and	P
4.9.4	Means to detect island situation		Р
4.9.4.1	sides the passive observation of voltage and frequency further means to detect an island required by the DSO. Detecting islanding sit shall not be contradictory to the immunity requirements of 4.5. Commonly used functions include: • Active methods tested with a resonant circ. • ROCOF tripping; • Switch to narrow frequency band; • Vector shift • Transfer trip. Only some of the methods above rely on standard for the detection of a vector shift, also called a vector jump, on European Standard is available.	may be tuations cuit;	P

Ρ

(See appended table 4.9.4.2)

Active methods tested with a resonant circuit

These are methods which pass the resonant circuit test for PV inverters according to EN 62116.

4.9.4.2

Page 29 of 127

Report no.	. 190430035GZU-001
------------	--------------------

EN 50549-1:2019			
Clause	Requirement - Test	Result - Remark	Verdict
4.9.4.3	Switch to narrow frequency band (see Annex E and Annex F) In case of local phenomena (e.g. a fault or the opening of circuit breaker along the line) the DSO in coordination with the responsible party may require a switch to a narrow frequency band to increase the interface protection relay sensitivity. In the event of a local fault it is possible to enable activation of the restrictive frequency window (using the two underfrequency/overfrequency thresholds described in 4.9.2.5 and 4.9.2.6) correlating its activation with another additional protection function. If required by the DSO, a digital input according to 4.9.4 shall be available to allow the DSO the activation of a restrictive frequency window by communication.		P
4.9.5	Digital input to the interface protection If required by the DSO, the interface protection shall have at least two configurable digital inputs. These inputs can for example be used to allow transfer trip or the switching to the narrow frequency band.		Р
4.10	Connection and starting to generate electrical pow	rer	Р
4.10.1	General Connection and starting to generate electrical power is only allowed after voltage and frequency are within the allowed voltage and frequency ranges for at least the specified observation time. It shall not be possible to overrule these conditions. Within these voltage and frequency ranges, the generating plant shall be capable of connecting and starting to generate electrical power. The setting of the conditions depends on whether the connection is due to a normal operational startup or an automatic reconnection after tripping of the interface protection. In case the settings for automatic reconnection after tripping and starting to generate power are not distinct in a generating plant, the tighter range and the start-up gradient shall be used. The frequency range, the voltage range, the observation time and the power gradient shall be field adjustable. For field adjustable settings, means shall be provided to protect the settings from unpermitted interference (e.g. password or seal) if required by the DSO.		P

Total Quality.		30 of 127	Report no. 190430035	GZU-001
	EN 50	0549-1:2019		
Clause	Requirement - Test		Result - Remark	Verdict
4.10.2	Automatic reconnection after tripping The frequency range, the voltage range observation time shall be adjustable in t according to Table 3 column 2. If no set specified by the DSO and the responsib default settings for the reconnection after the interface protection are according to column 3. After reconnection, the active power gengenerating plant shall not exceed a spengradient expressed as a percentage of nominal power of the unit per minute. If is specified by the DSO and the response default setting is 10 % Pn/min. Generating modules for which it is technically not fer increase the power respecting the specified over the full power range may connect at 10 min (randomized value, uniformly discordance.	the range attings are ble party, the per tripping of a Table 3 an erated by the cified attended the active and gradient sible party, the negular tripping assible to after 1 min to	(See appended table 4.10.2)	P
4.10.3	Starting to generate electrical power The frequency range, the voltage range observation time shall be adjustable in t according to Table 4 column 2. If no set specified by the DSO and the responsib default settings for connection or startin electrical power due to normal operatior or activity are according to Table 4 columneration of the start up is randomized by the DSO responsible party. Heat driven CHP generated do not need to keep a maximum gradient the start up is randomized by the nature demand. For manual operations performed on sit purpose of initial start-up or maintenance permitted to deviate from the observation ramp rate.	the range strings are ble party, the g to generate hal startup mn 3. but exceed the D and the herating units ht, since e of the heat see (e.g. for the see) it is	(See appended table 4.10.3) Default settings are applied	P
4.10.4	Synchronization Synchronizing a generating plant/unit widistribution network shall be fully automout be possible to manually close the synthetwo systems to carry out synchronizing.	atic i.e. it shall vitch between		Р
4.11	Ceasing and reduction of active pow	er on set point	t	Р
4.11.1	Ceasing active power Generating plants with a maximum capa kW or more shall be equipped with a log (input port) in order to cease active pow within five seconds following an instructi received at the input port. If required by the responsible party, this includes remo operation.	gic interface rer output ion being the DSO and	(See appended table 4.11)	Р

Page 31 of 127

	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
4.11.2	Reduction of active power on set point	(See appended table 4.11)	Р
4.11.2	For generating modules of type B, a generating plant shall be capable of reducing its active power to a limit value provided remotely by the DSO. The limit value shall be adjustable in the complete operating range from the maximum active power to minimum regulating level. The adjustment of the limit value shall be possible with a maximum increment of 10% of nominal power. A generation unit/plant shall be capable of carrying out the power output reduction to the respective limit within an envelope of not faster than 0,66 % P_n / s and not slower than 0,33 % P_n / s with an accuracy of 5 % of nominal power. Generating plants are permitted to disconnect from the network at a limit value below it minimum regulating level. If required by the DSO, this includes remote operation.	(See appended table 4.11)	

Page 32 of 127

Report no. 190430035GZU-001

EN 50549-1:2019		
Clause Requirement - Test	Result - Remark	Verdict
Generating plants whose power is above a threshold to be determined by the DSO and the responsible party shall have the capacity to be monitored by the DSO or TSO control centre or control centres as well as receive operation parameter settings for the functions specified in this European Standard from the DSO or TSO control centre or control centres. This information exchange is aimed at allowing the DSO and/or the TSO to improve, optimize and make safer the operation of their respective networks The remote monitoring and operation parameter settings system that may be used by the DSO is not aimed at replacing the manual and automatic control means implemented by the generating plant operator to control the operation of the generating plant. It should not interact directly with the power generation equipment and the switching devices of the generating plant. It should interact with the operation and control system of the generating plant. In principle, standardized communication should be used. It is recommended that in case of using protocols for signal transmission used between the DSO or TSO control centre or control centres and the generating plant, relevant technical standards (e.g. EN 60870-5-101, EN 60870-5-104, EN 61850-7-420, IEC/TR 61850-90-7, as well as EN 61400-25 for wind turbines and relevant parts of IEC 62351 for relevant security measures) are recognized. Alternative protocols can be agreed between the DSO and the producer. These protocols include hardwired digital input/output and analogue input/output provided locally by DSO. The information needed for remote monitoring and the setting of configurable parameters are specific to each distribution network and to the way it is operated. Signal transmission times between the DSO and/or the TSO control centre and the generating plant. Informative Annex B of EN50549-2 can be used as guidance regarding the monitoring information and the remote operation parameter setting.		N/A

Total Quality.	Page 33 of 127	Report no. 190430035	5GZU-001	
	EN 50549-1:2019			
Clause	Requirement - Test	Result - Remark	Verdict	
4.13	Requirements regarding single fault tolerance of interface protection system and interface switch If required in 4.3.2, the interface protection system and the interface switch shall meet the requirements of single fault tolerance. A single fault shall not lead to a loss of the safety functions. Faults of common cause shall be taken into account if the probability for the occurrence of such a fault is significant. Whenever reasonably practical, the individual fault shall be displayed and lead to the disconnection of the power generating unit or system. Series-connected switches shall each have a independent breaking capacity corresponding to the rated current of the generating unit and corresponding to the short circuit contribution of the generating unit. The short-time withstand current of the switching devices shall be coordinated with maximum short circuit power at the connection point. At least one of the switches shall be a switch-disconnector suitable for overvoltage category 2. For single-phase generating units, the switch shall have one contact of this overvoltage category for both the neutral conductor and the line conductor. For poly-phase generating units, it is required to have one contact of this overvoltage category for all active conductors. The second switch may be formed of electronic switching components from an inverter bridge or another circuit provided that the electronic switching components can be switched off by control signals and that it is ensured that a failure is detected and leads to prevention of the operation at the latest at the next reconnection. For PV-inverters without simple separation between the network and the PV generating unit (e.g. PV Inverter without transformer) both switches mentioned in the paragraph above shall be switchdisconnectors with the requirements described therein, although one switching device is permitted to be located between PV array and PV inverter.	(See appended table 4.13)	P	
Annex A	•		Info	
Annex B	Void		Info	
Annex C	Parameter Table		Info	
Annex D	List of national requirements applicable for generating plants			
Annex E	Loss of Mains and overall power system security		Info	
	+		1	

Info

Info

Abbreviations

Examples of protection strategies

Annex F

Annex G

Page 34 of 127

EN 50549-1:2019								
Clause	Requirement - Test Result - Remark							
Annex H Relationship between this European standard and the COMMISSION REGULATION (EU) 2016/631								

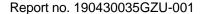
Page 35 of 127

Appended Table - Testing Result

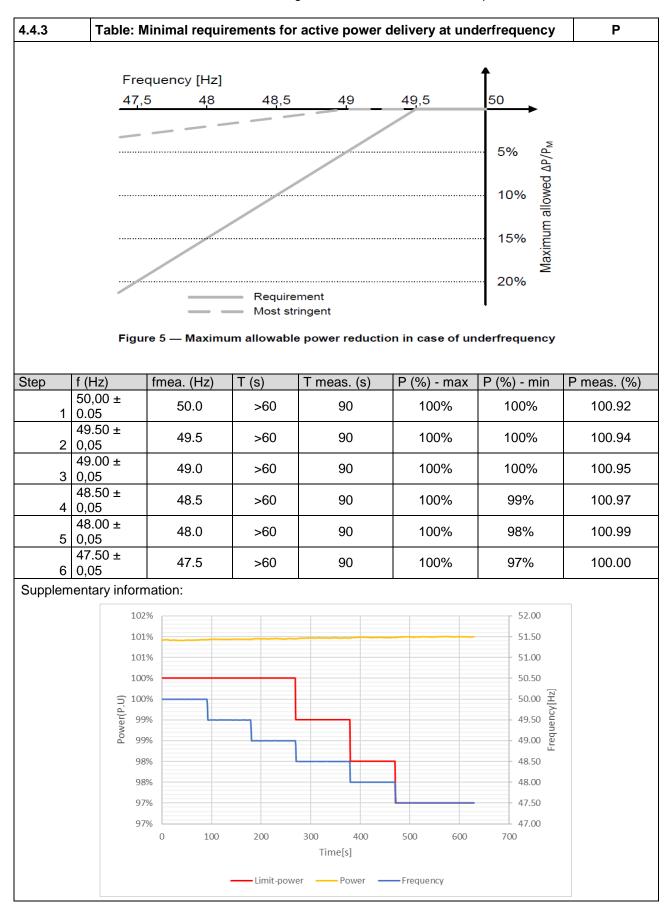
4.4.2	4.4.2 Table: Operating frequency range							Р
			Minimum requirement Mo		operation lost stringe	ost stringent		
	Frequency Range 47,0 Hz - 47,5 Hz 47,5 Hz - 48,5 Hz 48,5 Hz - 49,0 Hz 49,0 Hz - 51,0 Hz					requirement		
				not required 30 min ^a 30 min ^a Unlimited		20 s		
						90 min 90 min ^a Unlimited 90 min		
	51,0 Hz – 51,5 Hz		30 min ^a					
	51,5 Hz – 52,0 Hz		not required			15 min		
a Re	especting the lega ority in some syn	l framework, it chronous areas	is poss	sible that longer t	ime periods	are requir	ed by the rele	vant
Steps	f (Hz)	f (Hz) Meas	ured	Time	Time me	asured	Comments	S
1	47 Hz	47.0		>20 s	12	23s		
2	47.5 Hz	47.5		>90 min	104min		severe conditions: >90	
							severe co	nditions: >90
3	48.5 Hz	48.5		>90 min	111min			min
4	52 Hz	52.0		>15 min	34min			
5	50 Hz	50.0		> 1 min	182s			
6	51.5 Hz	51.5		>90 min	112	2min	severe conditions: >90 min	
	40000						54	
	35000						- 53	
	30000						- 52	
	25000						51 N	
	Dower[W]						50 ouenbe	
	15000						49 년	
	10000						- 48	
	5000						47	

5000

10000

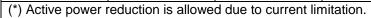

Time[s]

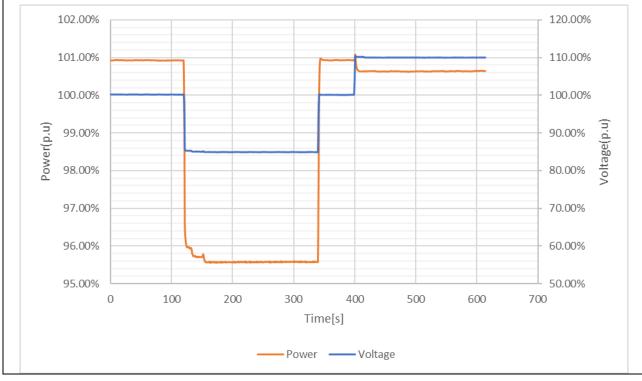
Power Frequency


15000

20000

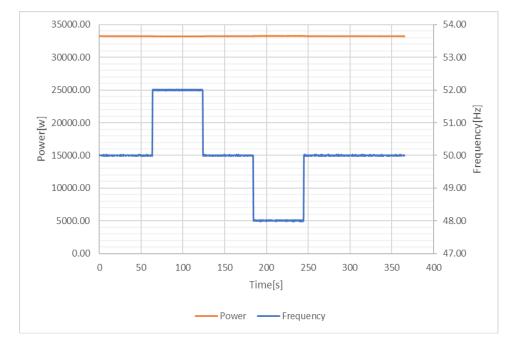
25000

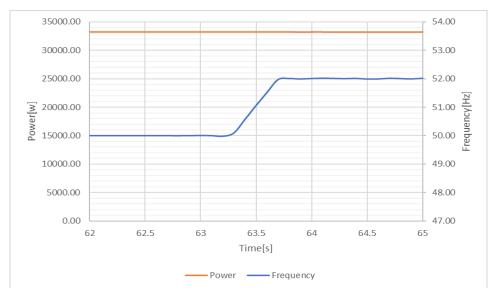




Page 37 of 127

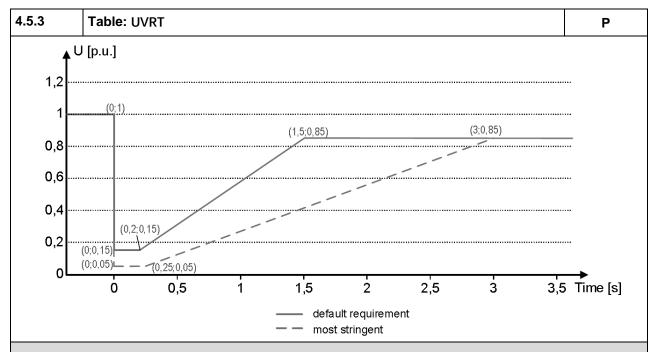
4.4.4 Table: Continuous voltage operation range						
Step	Voltage (%)	P (%)	P meas. (%)	Time (s)	T meas (s)	
1	100	100	100.93	>60	120.00	
2	85	100 (*)	95.61	>120	219.00	
3	100	100	100.92	>5	58.00	
4	110	100	100.65	>120	214.00	





Page 38 of 127

4.5.2	Р					
Ste	eps	f (Hz)	Δt (s) step change	Stop time	f meas. (Hz)	t meas. (s)
1	1	50.00 ± 0,05	n/a	>10 s	50.0	63.2
2	2	52.00 ± 0,05	1 s	>10 s	50.0 to 52.0	1.0
3	3	50.00 ± 0,05	1 s	>10 s	52.0 to 50.0	1.0
4	1	48.00 ± 0,05	1 s	>10 s	50.0 to 48.0	1.0
Ę	5	50.00 ± 0,05	1 s	>10 s	48.0 to 50.0	1.0

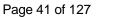


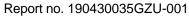
Page 39 of 127

Report no. 190430035GZU-001

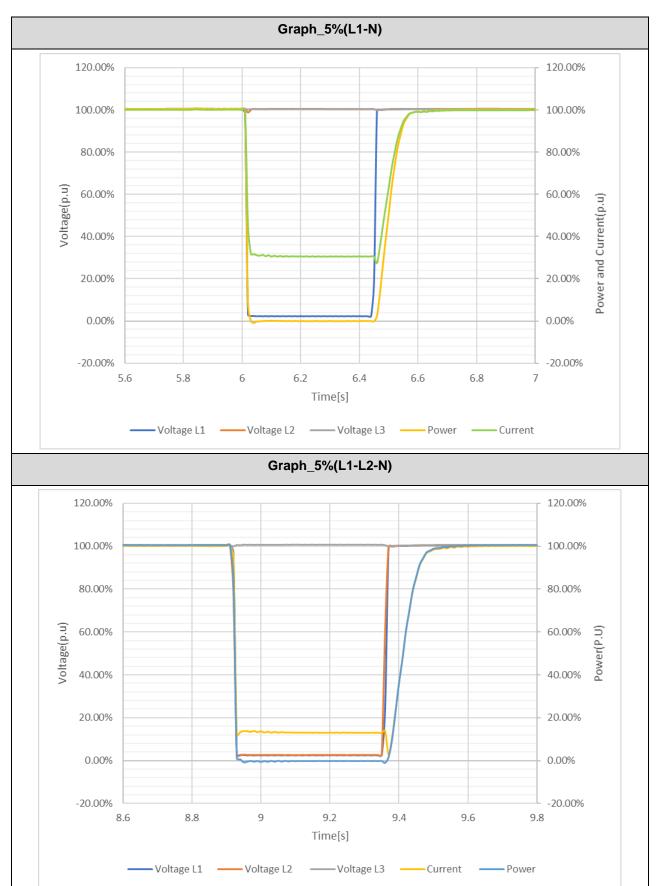
Test at full load (>90%)

			U meas.(%)				
Udip	Туре	t min (ms)	R	S	T	T meas.(ms)	P recover (s)
	L1-N		2.33	100.49	100.39	420	0.11
	L2-N		100.40	2.29	100.50	430	0.11
	L3-N		100.46	100.38	2.34	430	0.13
5%	L1-L2-N	250	2.52	2.61	100.73	430	0.19
	L2-L3-N		100.27	2.18	2.17	430	0.21
	L1-L3-N		2.66	100.68	2.54	430	0.19
	L1-L2-L3-N		2.77	2.80	2.83	430	0.17
	L1-N		24.79	100.26	100.24	1030	0.51
	L2-N		100.21	24.79	100.24	1030	0.53
	L3-N		100.20	100.22	24.78	1010	0.47
25%	L1-L2-N	938	25.04	25.02	100.25	1030	0.19
	L2-L3-N		100.29	25.04	25.03	1030	0.57
	L1-L3-N		25.03	100.26	25.04	1030	0.57
	L1-L2-L3-N		25.07	25.07	25.10	1030	0.23

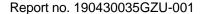

Page 40 of 127

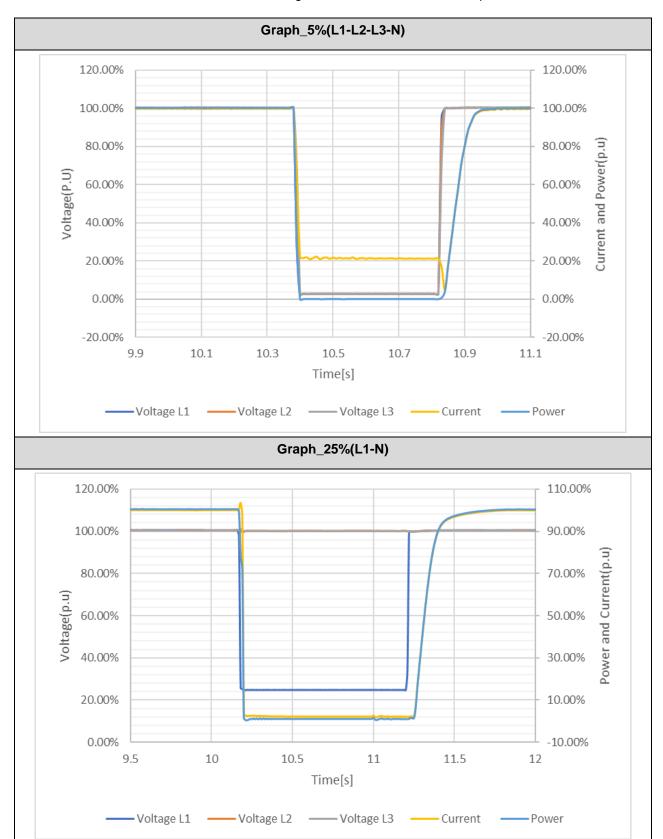

Report no.	190430035GZU-001
------------	------------------

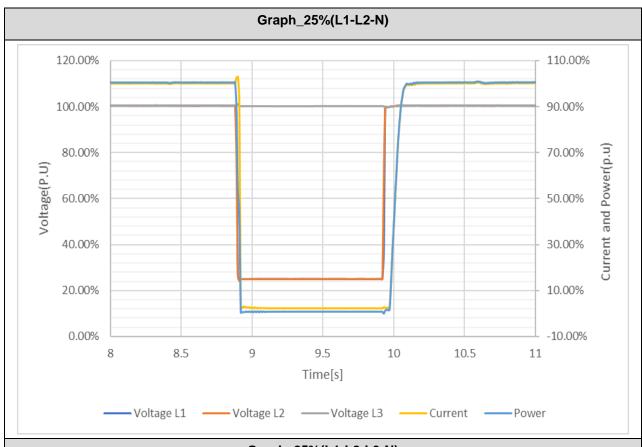
	L1-N		50.04	100.21	100.19	1990	0.45
	L2-N		100.22	50.06	100.19	1990	0.55
	L3-N		100.25	100.21	50.04	1990	0.39
50%	L1-L2-N	1797	50.07	50.07	100.22	1990	0.55
	L2-L3-N		100.25	50.07	50.07	1990	0.53
	L1-L3-N		50.1	100.23	50.08	1990	0.55
	L1-L2-L3-N		50.10	50.10	50.11	1990	0.21
	L1-N		75.66	100.06	100.11	3040	0.3
	L2-N		100.22	74.98	100.26	3030	0.31
	L3-N		100.25	100.21	74.98	3030	0.31
75%	L1-L2-N	2656	75.03	74.99	100.27	3030	0.71
	L2-L3-N		100.26	75.01	75.05	3030	0.72
	L1-L3-N		75.04	100.18	75.04	3030	0.42
	L1-L2-L3-N		75.05	75.04	75.04	3030	0.23

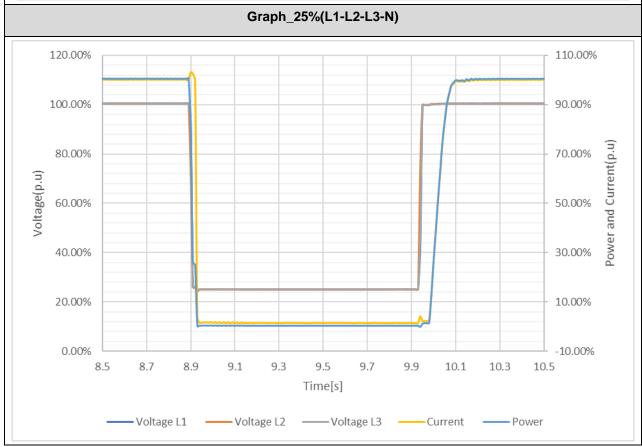

Remark:

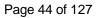
The tests are performed together with clause 4.7.4.2.2 Zero current mode and enabling of default setting: undervoltage of 50%Un



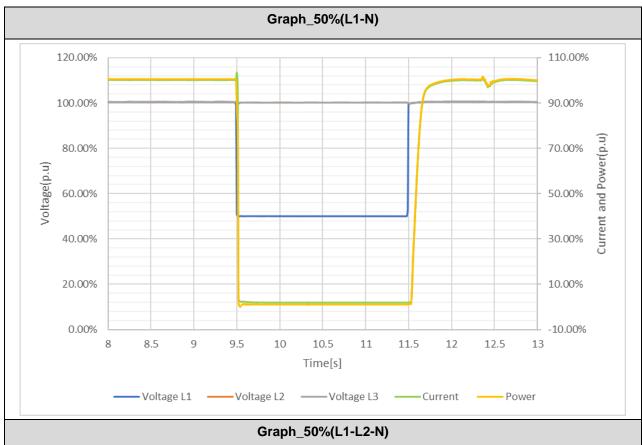


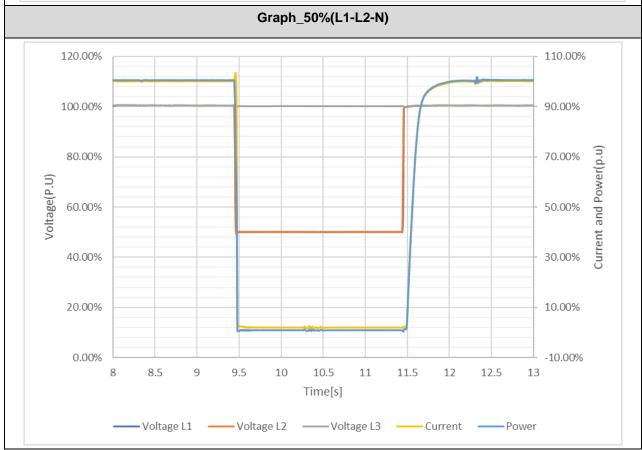


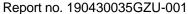


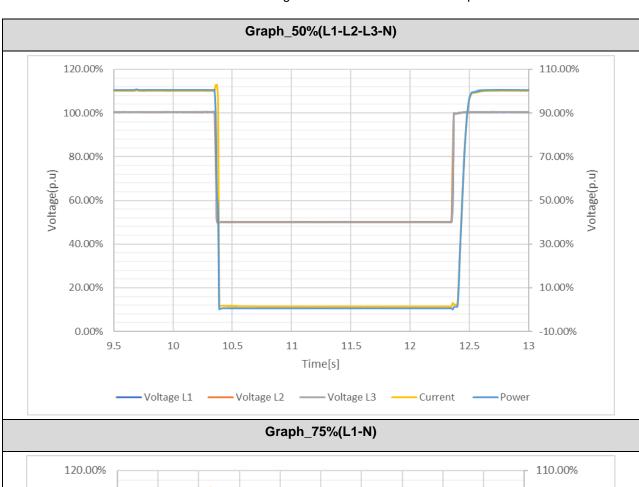


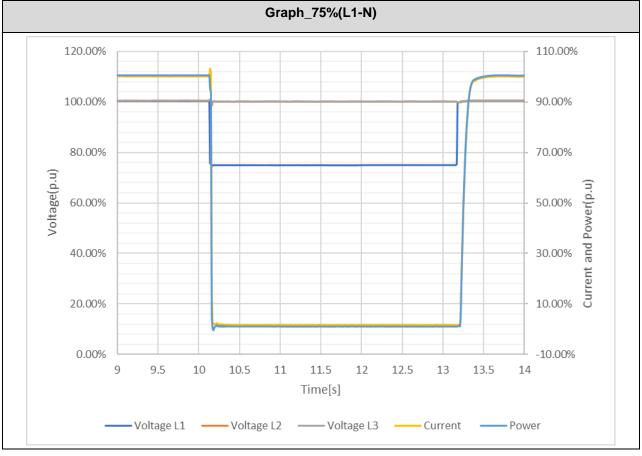


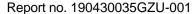


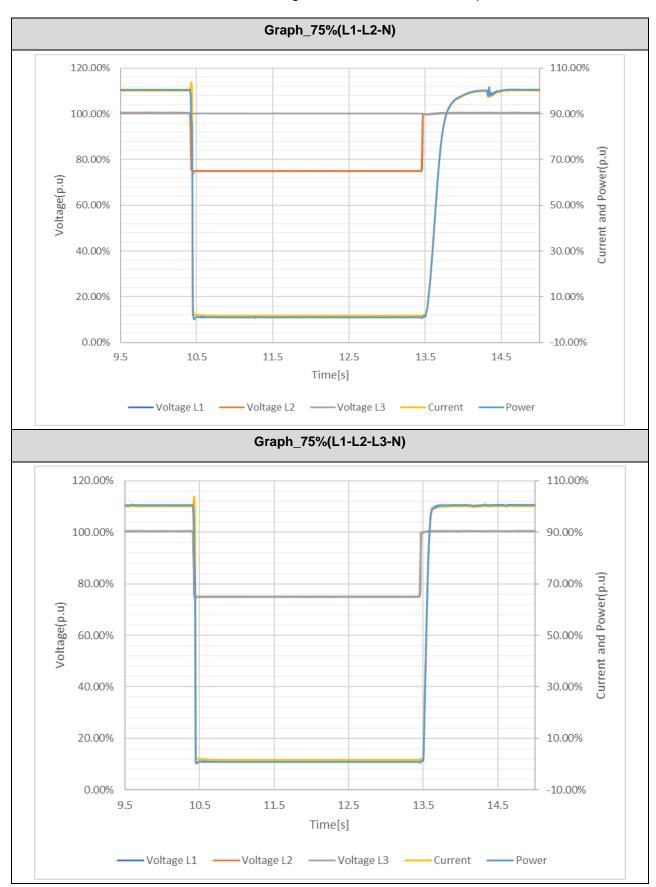








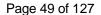


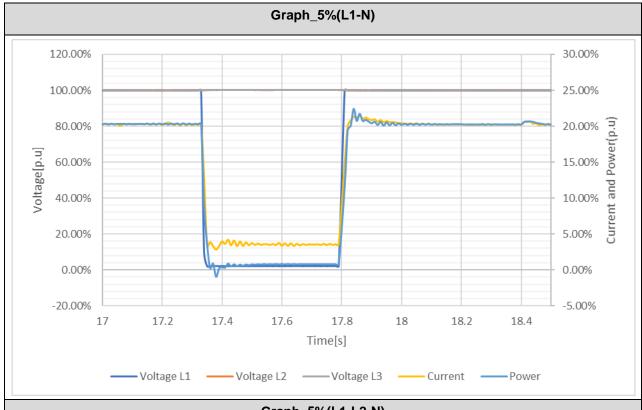


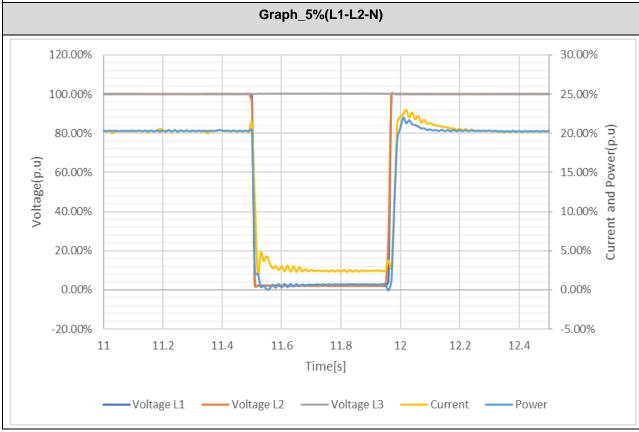
Page 47 of 127

Test at partial load (20%)									
				U meas.(%)					
Udip	Туре	t min (ms)	R	S	T	T meas.(ms)	P recover (s)		
	L1-N		2.08	100.18	100.18	450	0.02		
	L2-N		100.17	2.14	100.16	450	0.03		
	L3-N		100.19	100.23	2.15	450	0.05		
5%	L1-L2-N	250	2.21	2.15	100.30	450	0.04		
	L2-L3-N		100.30	2.18	2.17	450	0.04		
	L1-L3-N		2.20	100.28	2.21	450	0.04		
	L1-L2-L3-N		2.17	2.16	2.18	450	0.03		
	L1-N		24.97	100.15	100.18	1050	0.12		
	L2-N		100.19	24.96	100.22	1050	0.11		
	L3-N		100.19	100.18	25.01	1050	0.13		
25%	L1-L2-N	938	25.01	24.98	100.24	1050	0.12		
	L2-L3-N		100.16	24.98	24.99	1050	0.11		
	L1-L3-N		25.00	100.20	24.99	1050	0.1		
	L1-L2-L3-N		25.00	25.01	25.06	1050	0.16		
	L1-N		50.04	100.12	100.23	1890	0.10		
	L2-N		100.20	50.02	100.19	1890	0.10		
	L3-N		100.20	100.15	50.02	1890	0.10		
50%	L1-L2-N	1797	50.04	50.07	100.23	1890	0.12		
	L2-L3-N		100.23	50.06	50.04	1890	0.10		
	L1-L3-N		50.07	100.23	50.05	1890	0.12		
	L1-L2-L3-N		50.05	50.08	50.07	1890	0.14		
	L1-N		74.91	100.20	100.22	3050	0.12		
	L2-N		100.20	74.88	100.20	3050	0.12		
75%	L3-N	2656	100.16	100.17	74.88	3040	0.12		
	L1-L2-N		74.91	74.90	100.23	3050	0.12		
	L2-L3-N		100.20	74.90	74.91	3050	0.12		

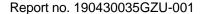
Page 48 of 127

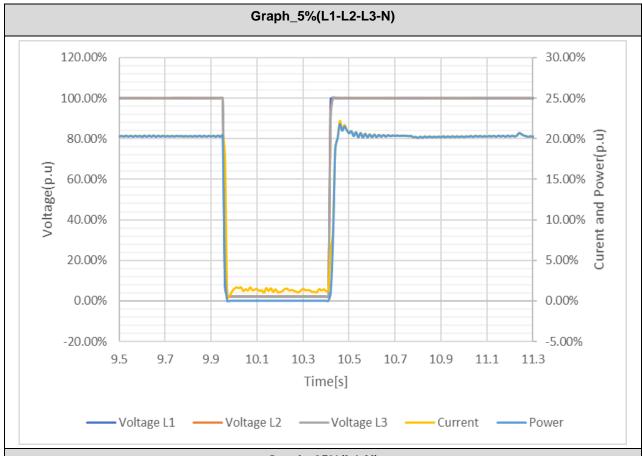

Report no.	190430035GZU-001
------------	------------------

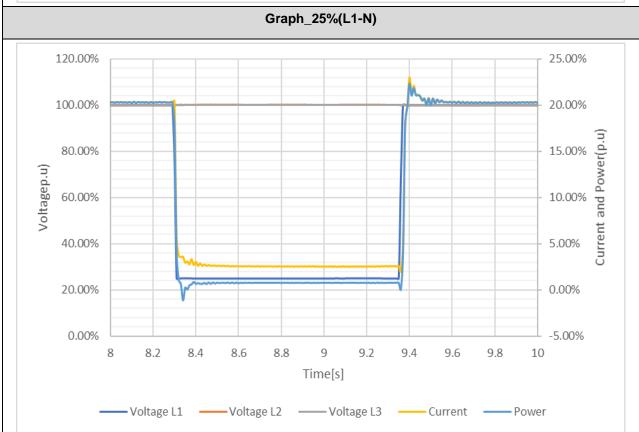

L1-L3-N	74.94	100.17	74.90	3050	0.12
L1-L2-L3-N	74.93	74.92	74.95	3050	0.12

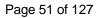

Remark:

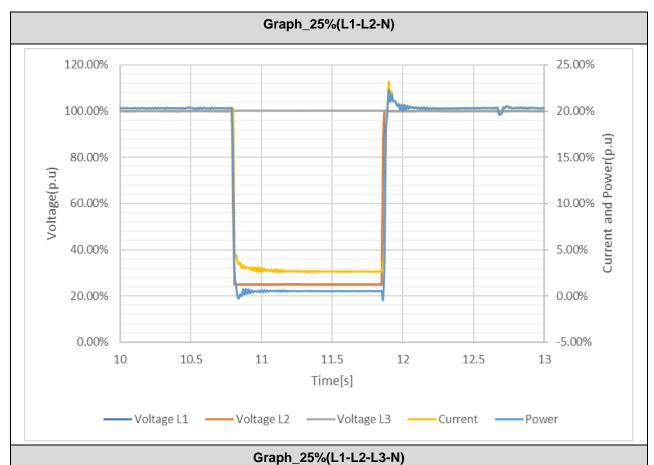
The tests are performed together with clause 4.7.4.2.2 Zero current mode and enabling of default setting: undervoltage of 50%Un

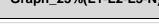


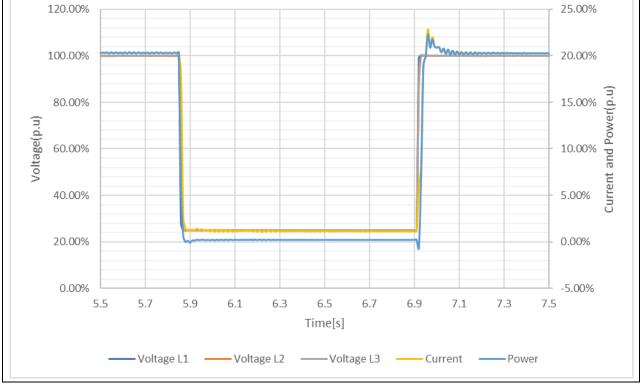


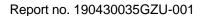


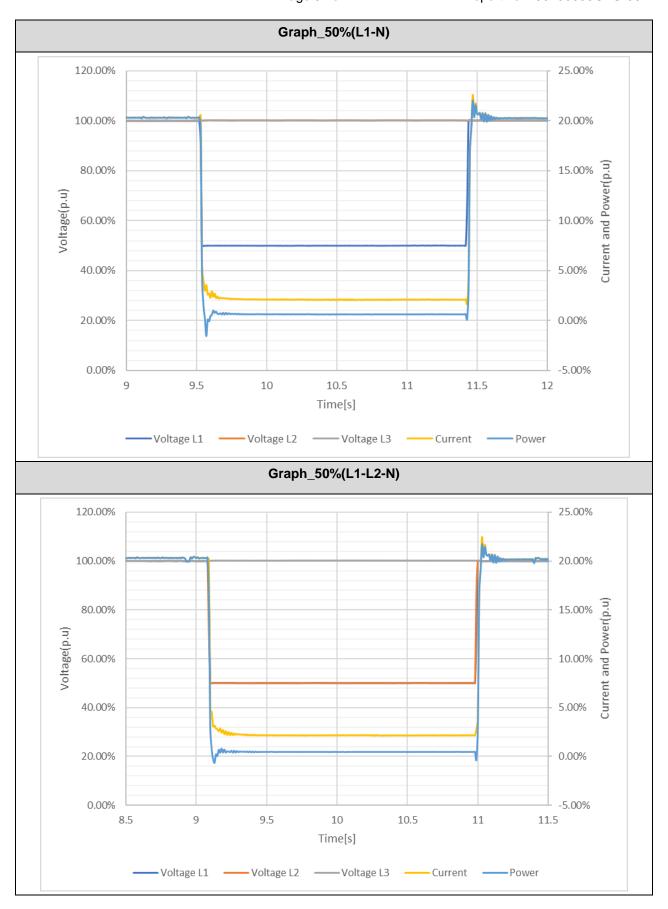


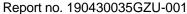


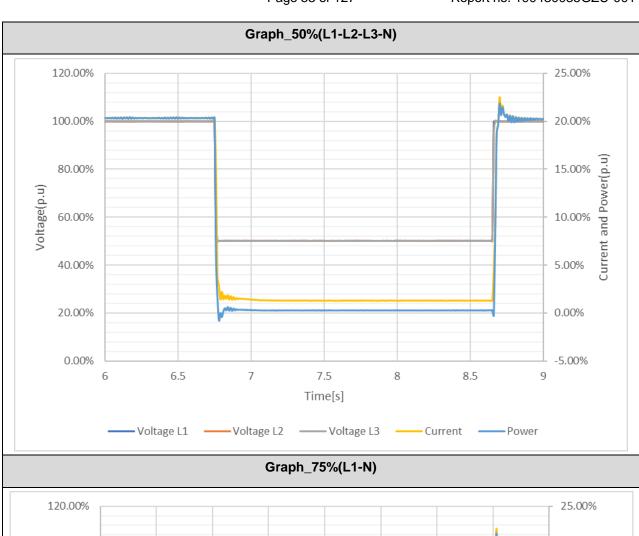


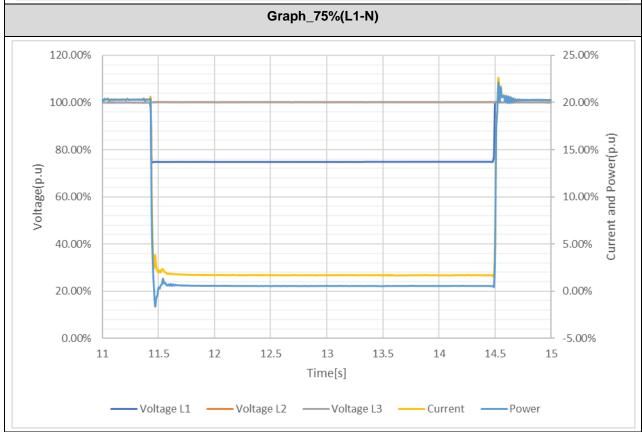


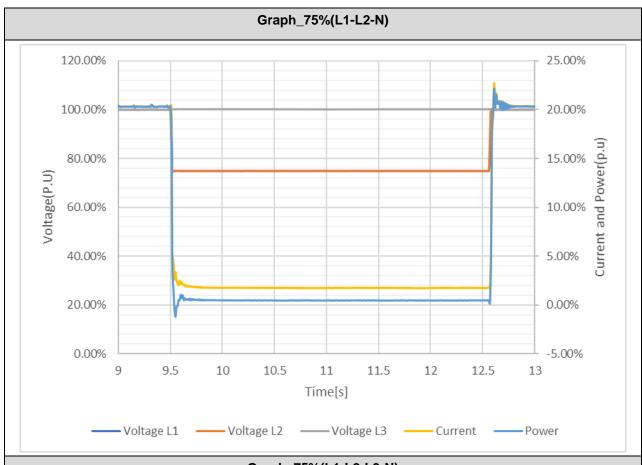


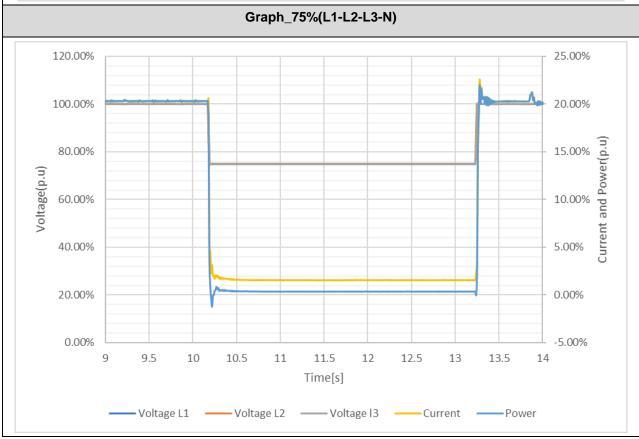




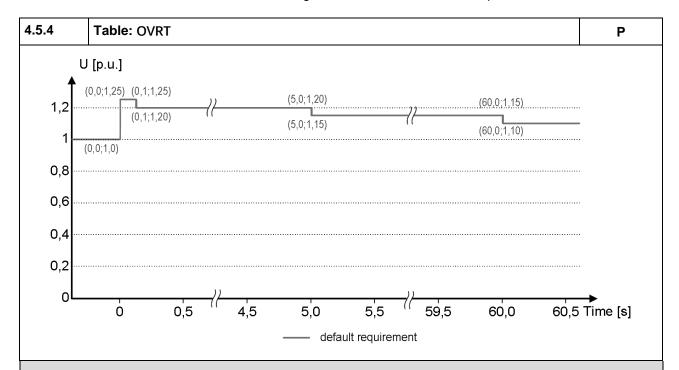


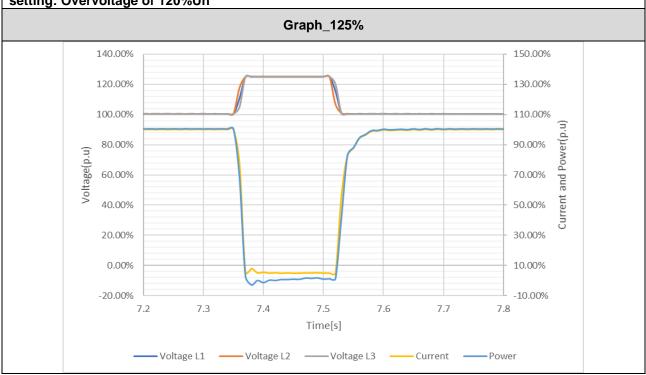


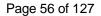


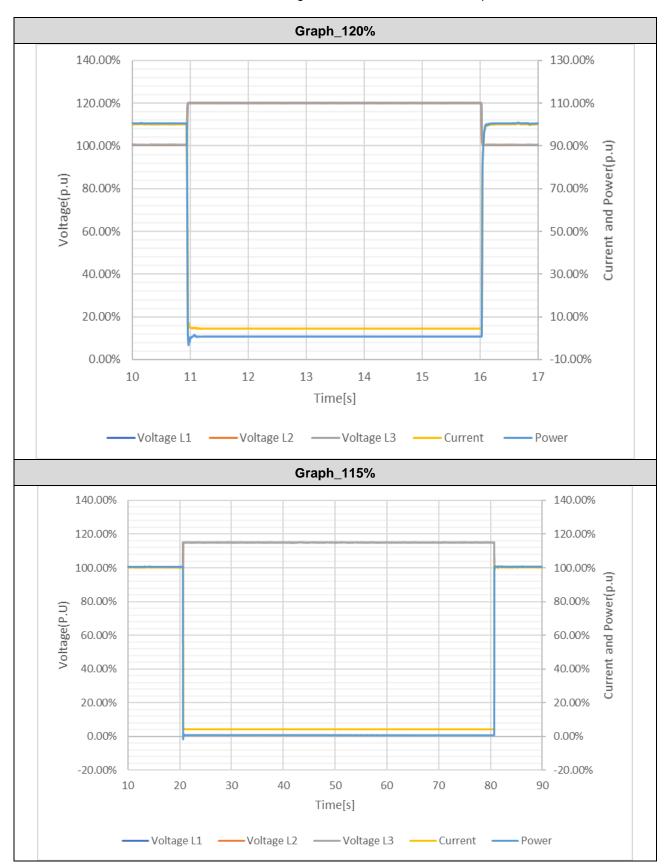





Page 54 of 127 Report no. 190430035GZU-001

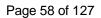


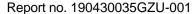

Test at fu	Test at full load (>90%)									
			l	J meas. (%)	T meas.				
Udip	Type	t min (ms)	R	S	Т	(ms)	P recover (s)			
125%	3 ph	100	125.16	125.01	125.15	150	0.12			
120%	3 ph	5000	120.14	120.05	120.11	5070	0.13			
115%	3 ph	60000	115.10	115.10	115.11	60070	0.09			


Remark:

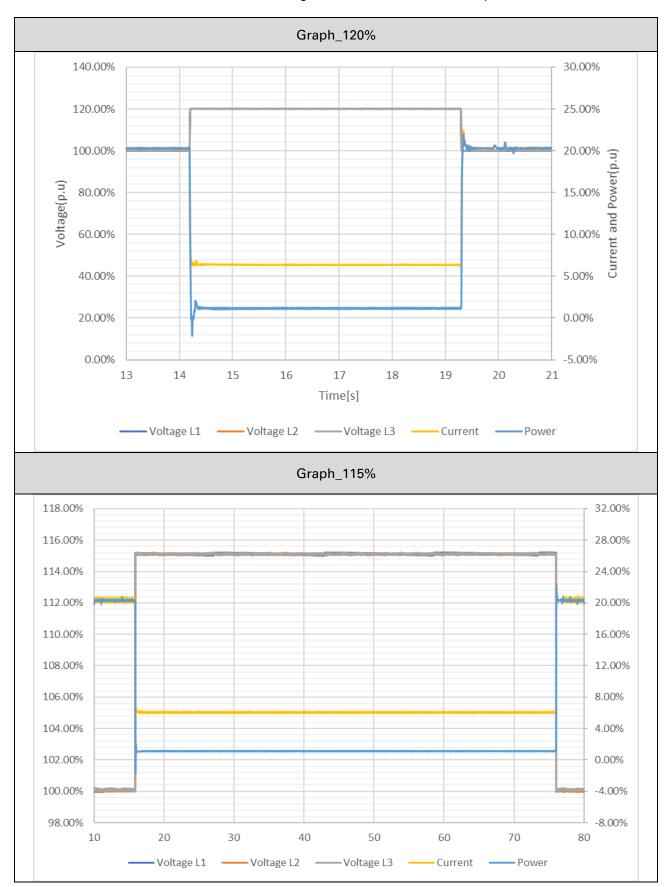
The tests are performed together with clause 4.7.4.2.2 Zero current mode and enabling of default setting: Overvoltage of 120%Un



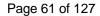


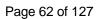


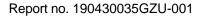
Page 57 of 127

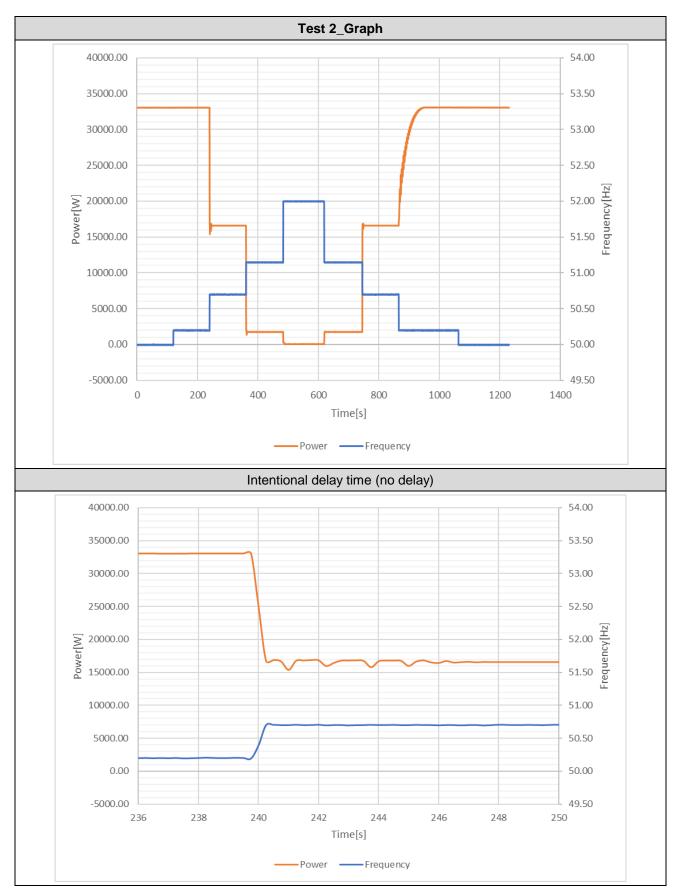

Test at p	Test at partial load (20%)								
				U meas. (%)		T meas.			
Udip	Type	t min (ms)	R	S	Т	(ms)	P recover (s)		
125%	3 ph	100	125.04	125.14	125.18	190	0.14		
120%	3 ph	5000	120.08	120.13	120.13	5090	0.14		
115%	3 ph	60000	115.21	115.12	115.12	60130	0.12		

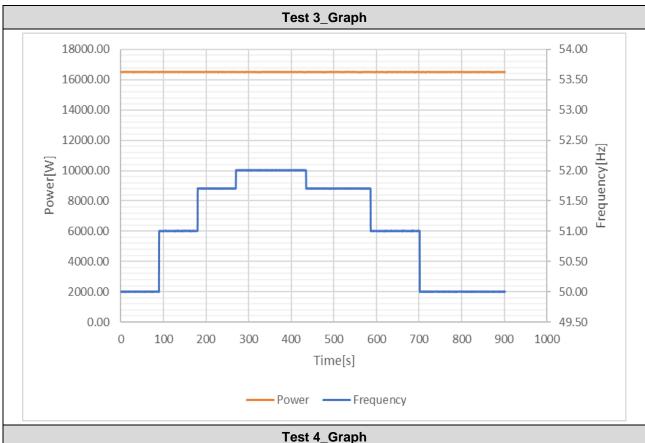
Page 59 of 127

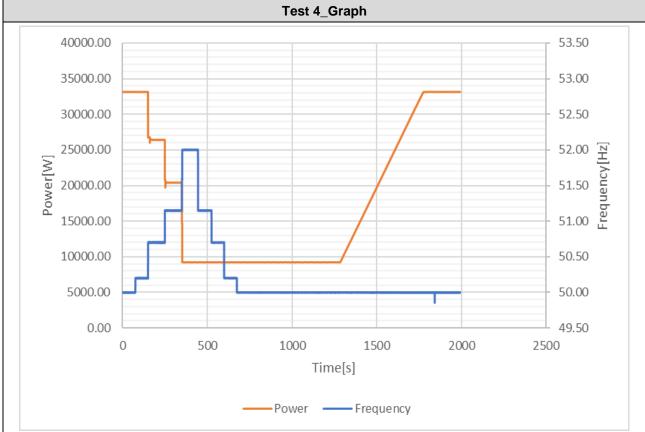

4.6.1 Table: Po	ower respon	se to over fr	equency		Р
	1009	% Pn, f1 =50.2	2Hz; droop=12%;	f-stop deactivated, with	n delay of 2 s
Test 1	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)
50Hz ± 0.01Hz	50.00	33040.99	33000.00		
50.2Hz ± 0.01Hz	50.20	33037.79	33000.00		
50.70Hz ± 0.01Hz	50.70	30267.75	30250.00	17.75	± 3300
51.15Hz ± 0.01Hz	51.15	27712.44	27775.00	-62.56	± 3300
52.0Hz ± 0.01Hz	52.00	22912.95	23100.00	-187.05	± 3300
51.15Hz ± 0.01Hz	51.15	27710.86	27775.00	-64.14	± 3300
50.70Hz ± 0.01Hz	50.70	30246.98	30250.00	-3.02	± 3300
50.2Hz ± 0.01Hz	50.20	33033.40	33000.00		
50Hz ± 0.01Hz	50.00	33032.54	33000.00		
				2%; f-stop deactivated,	no delay
Test 2	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)
50Hz ± 0.01Hz	50.00	33027.02	33000.00		
50.2Hz ± 0.01Hz	50.20	33010.88	33000.00		
50.70Hz ± 0.01Hz	50.70	16556.06	16500.00	56.06	± 3300
51.15Hz ± 0.01Hz	51.15	1719.87	1650.00	69.87	± 3300
52.0Hz ± 0.01Hz	52.00	21.52	0.00	21.52	± 3300
51.15Hz ± 0.01Hz	51.15	1719.17	1650.00	69.17	± 3300
50.70Hz ± 0.01Hz	50.70	16568.14	16500.00	68.14	± 3300
50.2Hz ± 0.01Hz	50.20	33047.33	33000.00		
50Hz ± 0.01Hz	50.00	33040.23	33000.00		
				%; f-stop deactivated, r	no delay
Test 3	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)
50Hz ± 0.01Hz	50.00	16516.23			
51.0Hz ± 0.01Hz	51.00	16514.68	16500.00	14.68	± 3300
51.70Hz ± 0.01Hz	51.70	16514.36	16500.00	14.36	± 3300
52.0Hz ± 0.01Hz	52.00	16514.75	16500.00	14.75	± 3300
51.70Hz ± 0.01Hz	51.70	16514.24	16500.00	14.24	± 3300
51.00Hz ± 0.01Hz	51.00	16513.23	16500.00	13.23	± 3300
50Hz ± 0.01Hz	50.00	16513.00			


Page 60 of 127


	100% Pn, f1 =50.2Hz; droop=5%; f-stop =50.1, no delay, Deactivation time tstop 30s						
Test 4	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)		
50Hz ± 0.01Hz	50.00	33147.49	33000.00				
50.2Hz ± 0.01Hz	50.20	33144.97	33000.00				
50.70Hz ± 0.01Hz	50.70	26443.23	26400.00	43.23	± 3300		
51.15Hz ± 0.01Hz	51.15	20419.18	20460.00	-40.82	± 3300		
52.0Hz ± 0.01Hz	52.00	9212.16	9240.00	-27.84	± 3300		
51.15Hz ± 0.01Hz	51.15	9212.34	9240.00	-27.66	± 3300		
50.70Hz ± 0.01Hz	50.70	9212.29	9240.00	-27.71	± 3300		
50.2Hz ± 0.01Hz	50.20	9212.35	9240.00	-27.65	± 3300		
50Hz ± 0.01Hz	50.00	33145.23	9240.00				







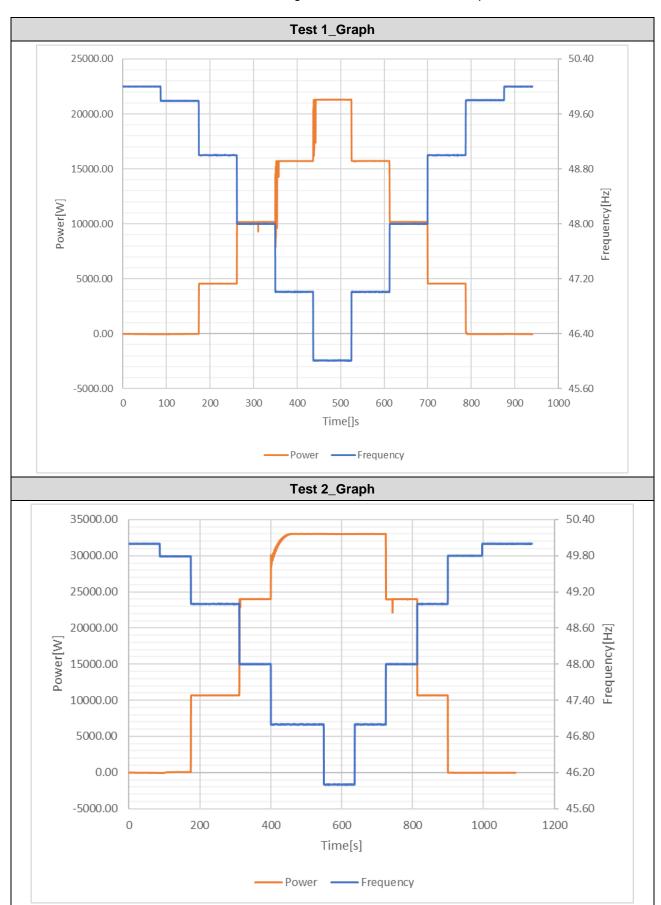
Page 64 of 127

Report no.	190430035GZU	-001
------------	--------------	------

4.6.2	Table: Powe	r response	response to under frequency							
Test 1			0% Pn, f1 =49.8Hz; droop=12%; with delay of 2 s							
		f (Hz)	Measured output from standard characteristic (W) Calculated from standard characteristic curve P (W) Tolerance between measured P and calculated P (W)		Tolerance Limit					
50Hz ± 0).01Hz	50.00	-33.79		1	-				
49.8Hz ± 0.01Hz		49.80	-31.39	0.00	-31.39	± 3300				
49.0Hz ± 0.01z		49.00	4559.98	4400.00 159.98		± 3300				
48.0Hz ±	± 0.01z	48.00	10144.96	9900.00	244.96	± 3300				
47.0Hz ±	± 0.01z	47.00	15707.97	15400.00	307.97	± 3300				
46.0Hz ±	± 0.01z	46.00	21283.06	20900.00	383.06	± 3300				
47.0Hz ± 0.01z		47.00	15716.75	15400.00	316.75	± 3300				
48.0Hz ± 0.01z		48.00	10156.45	9900.00	256.45	± 3300				
49.0Hz ± 0.01z		49.00	4562.59	4400.00	162.59	± 3300				
49.8Hz ± 0.01Hz		49.80	-33.67	0.00	-33.67	± 3300				
50.0Hz ± 0.01Hz		50.00	-33.01							

	0% Pn, f1 =49.8Hz; droop=5%; no delay						
Test 2	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit		
50Hz ± 0.01Hz	50.00	-32.63					
49.8Hz ± 0.01Hz	49.80	53.02	0.00	53.02	± 3300		
49.0Hz ± 0.01Hz	49.00	10682.14	10560.00	122.14	± 3300		
48.0Hz ± 0.01Hz	48.00	24006.46	23760.00	246.46	± 3300		
47.0Hz ± 0.01Hz	47.00	33021.13	33000.00	21.13	± 3300		
46.0Hz ± 0.01Hz	46.00	33014.13	33000.00	14.13	± 3300		
47.0Hz ± 0.01Hz	47.00	33016.29	33000.00	16.29	± 3300		
48.0Hz ± 0.01Hz	48.00	23993.58	23760.00	233.58	± 3300		
49.0Hz ± 0.01Hz	49.00	10686.46	10560.00	126.46	± 3300		
49.8Hz ± 0.01Hz	49.80	-28.22	0.00	-28.22	± 3300		
50.0Hz ± 0.01Hz	50.00	-33.29					

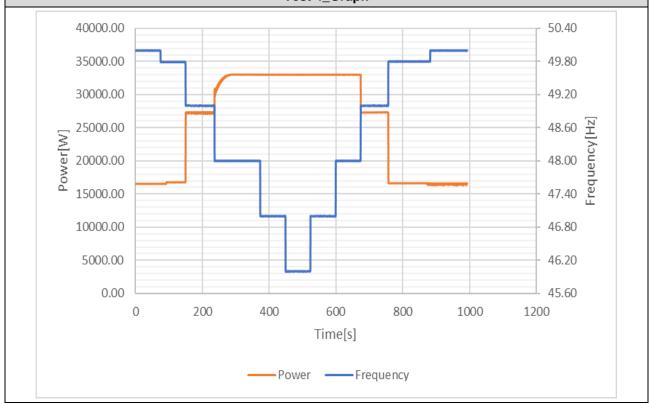
	50% Pn, f1 =46.0Hz; droop=5%; no delay						
Test 3	f (Hz)	z) Measured Calculated output from standard Power characteristic (W) curve P (W)		Tolerance between measured P and calculated P (W)	Tolerance Limit		
50Hz ± 0.01Hz	50.00	16541.15					
49.0Hz ± 0.01Hz	49.00	16547.93	16500.00	47.93	± 3300		
48.0Hz ± 0.01Hz	48.00	16548.49	16500.00	48.49	± 3300		
47.0Hz ± 0.01Hz	47.00	16547.22	16500.00	47.22	± 3300		
46.0Hz ± 0.01Hz	46.00	16404.66	16500.00	-95.34	± 3300		
47.0Hz ± 0.01Hz	47.00	16546.08	16500.00	46.08	± 3300		
48.0Hz ± 0.01Hz	48.00	16549.39	16500.00	49.39	± 3300		
49.0Hz ± 0.01Hz	49.00	16549.98	16500.00	49.98	± 3300		
50.0Hz ± 0.01Hz	50.00	16551.72					



Page 65 of 127

	50% Pn, f1 =49.8Hz; droop=5%, no delay;						
Test 4	f (Hz)	output from standard measured P a		Tolerance between measured P and calculated P (W)	Tolerance Limit		
50Hz ± 0.01Hz	50.00	16550.88		-			
49.8Hz ± 0.01Hz	49.80	16715.59	16500.00	215.59	± 3300		
49.0Hz ± 0.01Hz	49.00	27314.68	27060.00	254.68	± 3300		
48.0Hz ± 0.01Hz	48.00	32956.94	33000.00	-43.06	± 3300		
47.0Hz ± 0.01Hz	47.00	33016.36	33000.00	16.36	± 3300		
46.0Hz ± 0.01Hz	46.00	33009.67	33000.00	9.67	± 3300		
47.0Hz ± 0.01Hz	47.00	33012.08	33000.00	12.08	± 3300		
48.0Hz ± 0.01Hz	48.00	33013.18	33000.00	13.18	± 3300		
49.0Hz ± 0.01Hz	49.00	27319.57	27060.00	259.57	± 3300		
49.8Hz ± 0.01Hz	49.80	16628.38	16500.00	128.38	± 3300		
50.0Hz ± 0.01Hz	50.00	16610.11					





Page 68 of 127

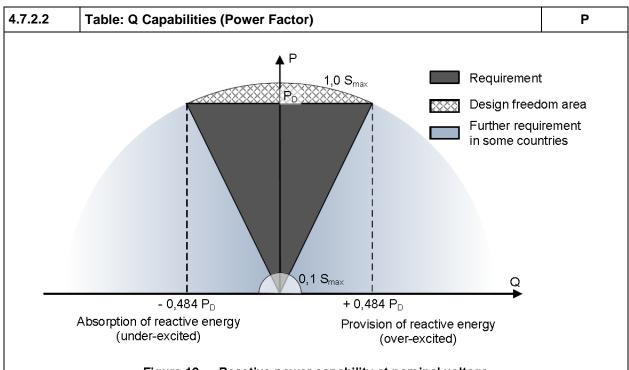


Figure 12 — Reactive power capability at nominal voltage

Lagging PF=0.9:									
P/Pn[%] setpoint	P[W]	Q[Var]	Cosφ	Cosφ Set- point	∆cosφ	Q[Var] setpoint	ΔQ/S _{max} [%]	LIMITE [%]	
10	3299.58	-1615.38	0.8981	0.9	-0.0019	-1598.26	-0.05	± 2	
20	6664.14	-3192.30	0.9019	0.9	0.0019	-3196.53	0.01	± 2	
30	10009.62	-4799.78	0.9017	0.9	0.0017	-4794.79	-0.02	± 2	
40	13278.96	-6367.00	0.9017	0.9	0.0017	-6393.05	0.08	± 2	
50	16539.46	-7927.87	0.9018	0.9	0.0018	-7991.31	0.19	± 2	
60	19861.24	-9521.63	0.9017	0.9	0.0017	-9589.58	0.21	± 2	
70	23137.17	-11095.37	0.9017	0.9	0.0017	-11187.84	0.28	± 2	
80	26430.89	-12676.43	0.9017	0.9	0.0017	-12786.10	0.33	± 2	
90	29686.86	-14251.15	0.9015	0.9	0.0015	-14384.37	0.40	± 2	
100*	33152.44	-15940.10	0.9012	0.9					
* Domorla	* Pamarky Due to the may current limit the active never con't get to 1000/								

Page 69 of 127 Report no. 190430035GZU-001 Leading PF=0.9: LIMITE Cosø P/Pn[%] Q[Var] $\Delta Q/S_{max}$ [%] P[W] Q[Var] Cosq Set- $\Delta \cos \varphi$ setpoint setpoint [%] point 3376.20 1677.25 0.8956 -0.0044 1598.26 0.24 ± 2 10 0.9 20 6667.98 3289.68 0.8968 0.9 -0.0032 3196.53 0.28 ± 2 9951.95 4862.60 0.8985 0.9 -0.0015 4794.79 0.21 30 ± 2 6483.10 13256.88 0.8983 -0.0017 6393.05 0.27 0.9 40 ± 2 16552.12 0.8978 -0.0022 7991.31 0.39 50 8118.57 0.9 ± 2 19842.73 9747.75 0.8975 -0.0025 9589.58 60 0.9 0.48 ± 2 23155.57 11385.27 0.8974 -0.0026 11187.84 70 0.9 0.60 ± 2 80 26420.62 12999.83 0.8973 0.9 -0.0027 12786.10 0.65 ± 2 29711.29 -0.0030 90 14643.69 0.8970 0.9 14384.37 0.79 ± 2 100 32962.09 16238.42 0.8971 0.9 Q=0: LIMITE Cosq P/Pn[%] Q[Var] $\Delta Q/S_{max}$ [%] P[W] Q[Var] Cosø Set-Δcosφ setpoint setpoint [%] point 1 0.00 0.84 10 3315.72 278.80 0.9963 -0.0037 ± 2 20 6678.68 249.80 0.9993 1 -0.0007 0.00 0.76 ± 2 9968.89 280.76 0.9996 1 -0.0004 0.00 0.85 30 ± 2 0.00 40 13256.93 357.67 0.9996 1 -0.0004 1.08 ± 2 16593.57 0.9996 1 50 430.99 -0.0004 0.00 1.31 ± 2 19887.97 0.9997 60 506.41 1 -0.0003 0.00 1.53 ± 2 23192.74 0.9996 1 -0.0004 0.00 70 512.80 1.55 ± 2 26495.98 530.98 0.9996 1 -0.0004 0.00 1.61 80 ± 2 29793.59 579.14 0.9995 1 -0.0005 0.00 90 1.75 ± 2

100

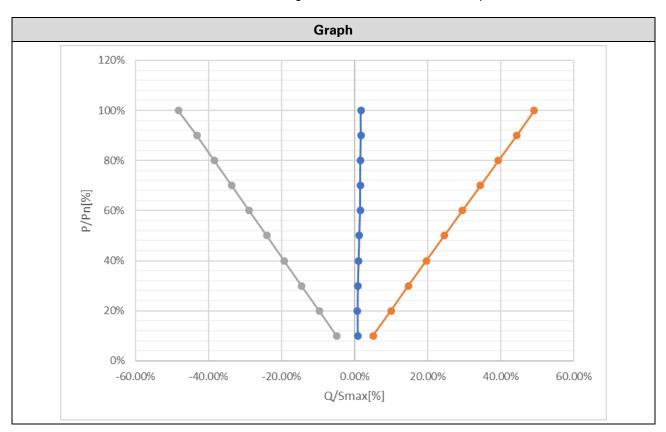
33121.91

566.09

0.9995

1

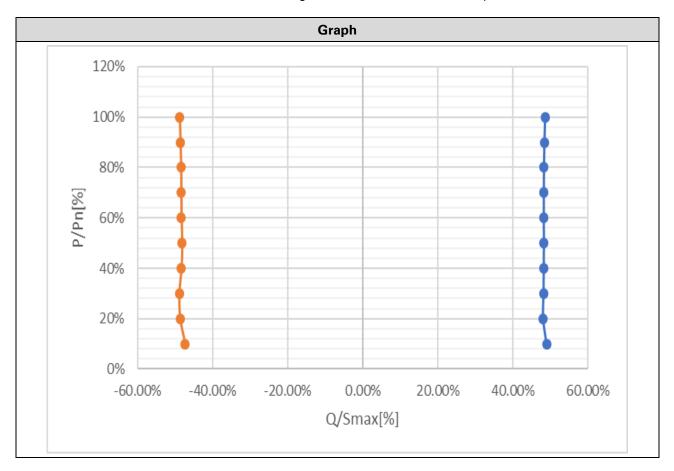
-0.0005


0.00

1.72

± 2

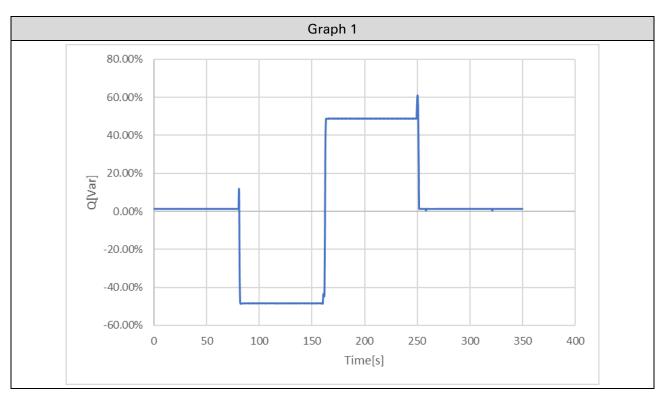
Page 70 of 127



Page 71 of 127

Q=48.43%Pn									
P/Pn[%] setpoint	P[W]	Q[Var]	Cosφ	Q[Var] setpoint	ΔQ/S _{max} [%]	LIMITE [%]			
10	3261.93	16171.58	0.1977	15981.9	0.57	± 2			
20	6660.33	15862.95	0.3871	15981.9	-0.36	± 2			
30	9970.06	15898.96	0.5313	15981.9	-0.25	± 2			
40	13240.08	15920.81	0.6394	15981.9	-0.19	± 2			
50	16590.81	15935.38	0.7212	15981.9	-0.14	± 2			
60	19843.31	15925.79	0.7799	15981.9	-0.17	± 2			
70	23132.84	15930.05	0.8236	15981.9	-0.16	± 2			
80	26456.71	15942.77	0.8565	15981.9	-0.12	± 2			
90	29757.73	15982.68	0.8810	15981.9	0.00	± 2			
100	33079.34	16045.68	0.8997	15981.9	0.19	± 2			
Q=-48.43%l	Pn .								
P/Pn[%] setpoint	P[W]	Q[Var]	Cosφ	Q[Var] setpoint	$\Delta Q/S_{max}$ [%]	LIMITE [%]			
10	3315.26	-15642.03	0.2073	-15981.9	1.03	± 2			
20	6630.89	-16072.19	0.3814	-15981.9	-0.27	± 2			
30	10008.91	-16147.80	0.5268	-15981.9	-0.50	± 2			
40	13247.64	-15962.75	0.6386	-15981.9	0.06	± 2			
50	16557.73	-15898.62	0.7213	-15981.9	0.25	± 2			
60	19900.56	-15963.07	0.7801	-15981.9	0.06	± 2			
70	23222.84	-15976.84	0.8239	-15981.9	0.02	± 2			
80	26543.79	-15992.09	0.8566	-15981.9	-0.03	± 2			
90	29757.31	-16044.16	0.8802	-15981.9	-0.19	± 2			
100	33120.63	-16107.28	0.8993	-15981.9	-0.38	± 2			

Page 72 of 127



Page 73 of 127

Report no.	190430035GZU-001
------------	------------------

Table: Check t	he settling tim	e					Р
	Test 1			Test	t 2	·	
Output powe	r Qmax ind [[VA] Qmax cap [VA]	Output power	er Qmax ind [\	/A]	Qmax cap [VA]	
100% Pn	-16044.9	16052.48	50% Pn	-15958	.00	160	81.41
		Test 1 (see	Graph 1): 100% Pn	%			
Point	Output power	Transient	Vac	Q _{E60} [VA]	Tr [[s]	limit [s]
1	33113.11	$0 \rightarrow Qmax ind$	229.00	-16044.96	2.00		60
2	33039.10	Qmax ind → Qmax cap	233.07	16052.48	3.50		60
3	33193.00	Qmax cap → 0	228.34	423.81	2.50		60
		Test 2	2 : 50% Pn				
Point	Output power	transient	Vac	QE60 [VA]	Tr	[s]	limit [s]
1	16559.85	$0 \rightarrow Qmax ind$	229.76	-15958.00	2.3	30	60
2	16534.04	Qmax ind → Qmax cap	230.78	16081.41	3.4	10	60
3	16604.03	Qmax cap \rightarrow 0	229.94	421.53	3.1	10	60

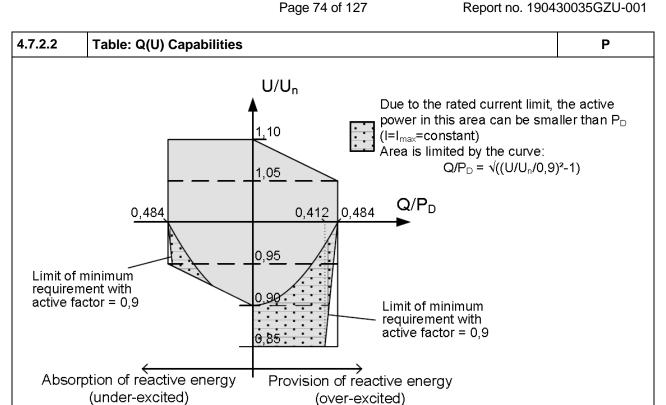


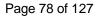
Figure 13 — Reactive power capability at active power P_D in the voltage range (positive sequence component of the fundamental)

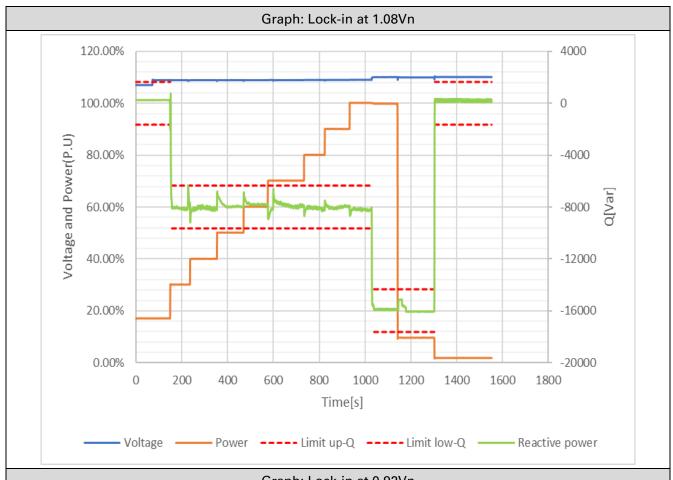
Over-excited	:						
	AC o	utput		Reactive power measured			
Voltage		Measured		Reactive	Value		
setting [V/Vn]	Voltage [V]	[V/Vn]	Active power [W]	power [Var]	[Q/P _n]	Limits	
1.10	253.27	1.10	33195.88	524.65	0.0159	±0.02	
1.08	249.12	1.08	33198.13	6407.44	0.1942	0.194±0.02	
1.05	241.75	1.05	33074.79	15929.96	0.4827		
1.00	230.63	1.00	33105.58	15944.71	0.4832		
0.95	218.79	0.95	31382.19	15987.57	0.4845		
0.92	211.95	0.92	29879.21	15998.70	0.4848		
0.90	207.27	0.90	29383.03	15983.78	0.4844		
0.85	195.79	0.85	27319.06	16010.46	0.4852		

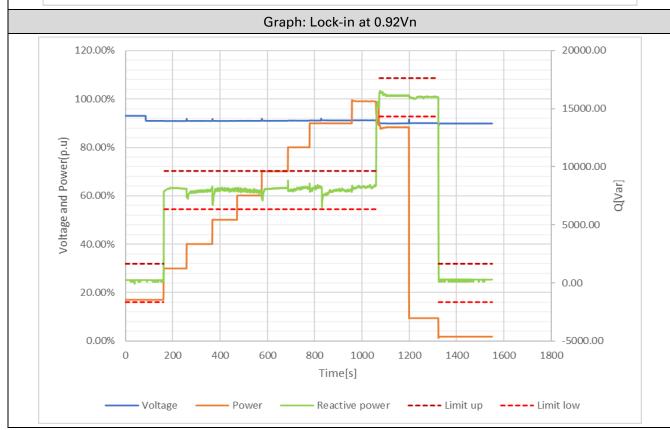
Page 75 of 127

Under-excited	d:					
	AC o	utput	Reactive power measured			
Voltage setting		Measured		Reactive	Value	
[V/Vn]	Voltage [V]	[V/Vn]	Active power [W]	power [Var]	[Q/P _n]	Limits
1.10	253.04	1.10	32979.96	-15956.08	-0.4835	
1.08	248.25	1.08	33031.09	-15984.27	-0.4844	
1.05	241.24	1.05	33029.22	-16016.13	-0.4853	
1.00	230.13	1.00	32978.95	-16066.30	-0.4869	
0.95	218.13	0.95	31243.10	-15883.35	-0.4813	
0.92	211.52	0.92	31869.28	-5782.29	-0.1752	-0.175±0.02
0.90	207.24	0.90	32961.50	526.72	0.0160	±0.02

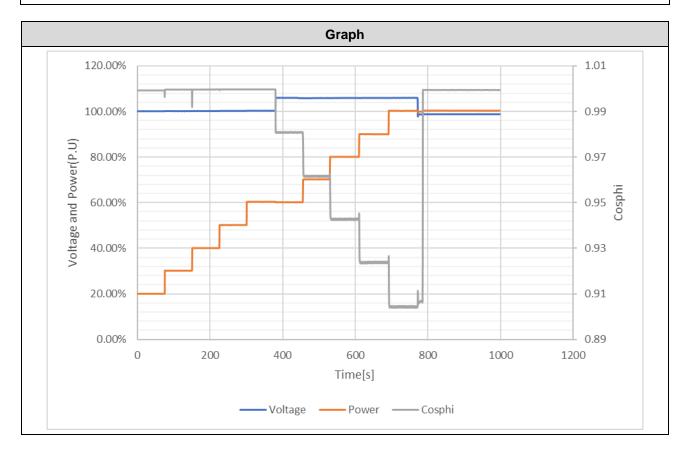
Page 76 of 127


4.7.2.3.3 Tal	ole: Q Control.	Voltage relat	ed control m	ode		Р
P/Pn [%] Set-point	Vac [V] Set-point	P/Pn [%] measured	Vac [V] Measured	Q [VAr] measured	Q [Var] expected	Δ Q [Var] (≤ ± 5 % Pn)
< 20 %	1,07 Vn	17.09	246.23	251.93	≈0 (< ± 5 % Pn)	0.76
< 20 %	1,09 Vn	17.10	250.63	253.51	≈0 (< ± 5 % Pn)	0.77
<20 % →30 %	1,09 Vn	30.13	250.53	-8007.24	-7992.60 (within 10sec)	-0.04
40 %	1,09 Vn	40.06	250.59	-8085.07	-7992.60	-0.28
50 %	1,09 Vn	50.17	250.58	-7894.08	-7992.60	0.30
60 %	1,09 Vn	60.15	250.55	-7768.84	-7992.60	0.68
70 %	1,09 Vn	70.21	250.61	-7857.17	-7992.60	0.41
80 %	1,09 Vn	80.13	250.74	-8082.63	-7992.60	-0.27
90 %	1,09 Vn	90.13	250.75	-7988.91	-7992.60	0.01
100 %	1,09 Vn	100.20	250.86	-8191.61	-7992.60	-0.60
100 %	1,1 Vn	99.91	253.25	-15883.76	-15981.90	0.30
100 % →10 %	1,1 Vn	9.65	253.00	-15919.40	-15981.90	0.19
10 % → ≤ 5 %	1,1 Vn	1.85	253.38	270.66	270.66 ≈0 (< ± 5 % Pn)	
P/Pn [%] Set-point	Vac [V] Set-point	P/Pn [%] measured	Vac [V] Measured	Q [VAr] measured	Q [Var] expected	Δ Q [Var] (≤ ± 5 % Pn)
< 20 %	0.93 Vn	17.04	214.03	241.36	≈0 (< ± 5 % Pn)	0.73
< 20 %	0.91 Vn	17.02	209.29	235.14	≈0 (< ± 5 % Pn)	0.71
<20 % → 30 %	0.91 Vn	30.00	209.15	8128.06	7992.60 (within 10sec)	0.41
40 %	0.91 Vn	40.09	209.19	7879.79	7992.60	-0.34
50 %	0.91 Vn	50.12	209.19	8039.83	7992.60	0.14
60 %	0.91 Vn	60.14	209.30	7945.63	7992.60	-0.14
70 %	0.91 Vn	70.13	209.33	8113.97	7992.60	0.37
80 %	0.91 Vn	80.04	209.47	8102.79	7992.60	0.33
90 %	0.91 Vn	89.97	209.68	7907.07	7992.60	-0.26




Page 77 of 127

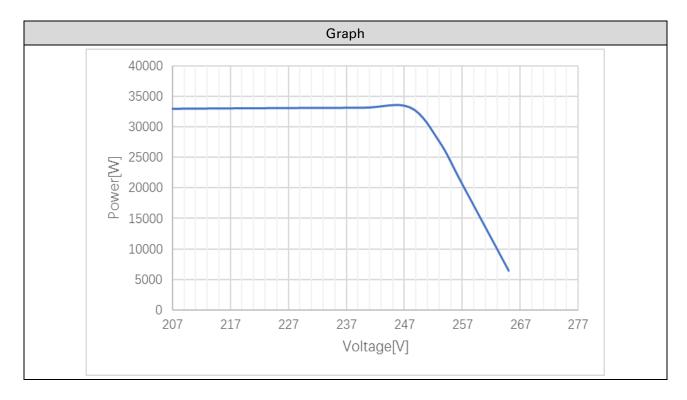
100 %	0.91 Vn	99.10	209.77	8259.11	7992.60	0.81
100 %	0.90 Vn	88.31	206.82	16171.13	15981.90	0.57
100 % →10 %	0.90 Vn	9.47	207.10	15993.09	15981.90	0.03
10 % →≤ 5 %	0.91 Vn	1.82	206.76	281.09	≈0 (< ± 5 % Pn)	0.85


Page 79 of 127

Report no. 190430035GZU-001

4.7.2.3.4	Table: Q C	ontrol Powe	r related co	ntrol modes	3			Р
P Desired (%Sn)	P measured (%Sn)	Q measured (Var)	Voltage Desired (%Un)	Voltage Measured (%Un)	Power Factor desired (cos φ)	Power Factor measured (cos φ)	∆Q (%S _{Max}	Limit) (%S _{Max})
20%	20.12	253.45	<105%	100.08	1.0000	0.9993	0.77	±2
30%	30.23	279.37	<105%	100.11	1.0000	0.9996	0.85	±2
40%	40.12	351.78	<105%	100.16	1.0000	0.9996	1.07	±2
50%	50.18	422.46	<105%	100.21	1.0000	0.9997	1.28	±2
60%	60.37	499.41	<105%	100.27	1.0000	0.9997	1.51	±2
60%	60.18	-3948.66	>105%	105.96	0.9800	0.9808	0.22	±2
70%	70.18	-6613.45	>105%	105.86	0.9600	0.9616	0.38	±2
80%	80.04	-9348.18	>105%	105.92	0.9400	0.9427	0.71	±2
90%	89.94	-12311.39	>105%	105.94	0.9200	0.9237	1.03	±2
100%	100.18	-15614.99	>105%	105.98	0.9000	0.9042	1.11	±2
100%	100.24	543.55	<100%	98.73	1.0000	0.9994	1.65	±2

Remark: Tested at lock-in voltage 1.05 Vn and lock-out voltage Vn.


The Lock-in value is adjustable between Vn and 1.1Vn in 0.01V steps, the Lock-out value is adjustable between 0.9Vn and Vn in 0.01V steps

Page 80 of 127

4.7.3	7.3 Table: Voltage control by active power								
Step #		Set voltage vaule V	lle V Measured voltage Measured values [W]		Measured power [%]				
1		207	0.90	32946.60		99.84			
2		219	0.95	33019.41		100.06			
3		230	1.00	33080.19	100.24				
4		240	1.05	33116.59		100.35			
5		248	1.08	33165.60		100.50			
6		253	1.10	27633.61		83.74			
7		257	1.12	20602.44		62.43			
8		265	1.15	6445.72		19.53			

Page 81 of 127

}	TABLE: (Current h	TABLE: Current harmonics emission test								
del: SOF	AR 20000T	L-G2									
			Norma	al amhione	: (EN 61000	1_3_42)					
					ower 33%						
	Watts(kW) 2,198/ 2,198/ 2,198										
		Vrm s(V)				23	0,07/ 230,01/ 230	0,00			
		Arms(A)					9,554/9,557/9,5	32			
	Fn	equency(l					50,00				
		3% outpu				0.60	04%/0,575%/0,6	27%			
Harmonics		nt Magnitu	· ·	% of Fur	ndam ental	0,00	Phase	Harm onic			
i iai iii o iii o s	L1	L2	L3	L1	L2	L3	Tilase	Current Limits (%)			
1st	9,554	9,556	9,532				Three Phase				
2nd	0,008	0,009	0,007	0,080	0,094	0,079	Three Phase	8,000			
3rd	0,027	0,009	0,014	0,281	0,094	0,148	Three Phase	21,600			
4th	0,008	0,01	0,009	0,087	0,102	0,090	Three Phase	4,000			
5th	0,015	0,027	0,018	0,158	0,281	0,186	Three Phase	10,700			
6th	0,01	0,008	0,01	0,101	0,080	0,101	Three Phase	2,667			
7th	0,012	0,011	0,015	0,121	0,118	0,157	Three Phase	7,200			
8th	0,008	0,006	0,007	0,079	0,068	0,076	Three Phase	2,000			
9th	0,023	0,008	0,015	0,239	0,082	0,159	Three Phase	3,800			
10th	0,004	0,005	0,004	0,042	0,050	0,043	Three Phase	1,600			
11th	0,007	0,014	0,012	0,072	0,143	0,128	Three Phase	3,100			
12th	0,004	0,004	0,005	0,042	0,045	0,051	Three Phase	1,333			
13th	0,008	0,01	0,017	0,088	0,107	0,183	Three Phase	2,000			
14th	0,003	0,003	0,004	0,035	0,030	0,040	Three Phase	8,000			
1 <i>5</i> th	0,009	0,006	0,012	0,096	0,067	0,130	Three Phase	N/A			
16th	0,003	0,003	0,003	0,030	0,030	0,030	Three Phase	N/A			
17th	0,013	0,013	0,019	0,131	0,132	0,198	Three Phase	N/A			
18th	0,003	0,003	0,003	0,031	0,034	0,036	Three Phase	N/A			
19th	0,009	0,014	0,017	0,096	0,151	0,179	Three Phase	N/A			
20th	0,003	0,003	0,002	0,027	0,028	0,026	Three Phase	N/A			
21th	0,006	0,004	0,007	0,063	0,045	0,078	Three Phase	N/A			
22th	0,002	0,003	0,002	0,025	0,027	0,025	Three Phase	N/A			
23th	0,016	0,017	0,018	0,171	0,174	0,193	Three Phase	N/A			
24th	0,003	0,003	0,003	0,033	0,028	0,035	Three Phase	N/A			
25th	0,013	0,013	0,015	0,140	0,138	0,158	Three Phase	N/A			
26th	0,003	0,003	0,003	0,027	0,031	0,028	Three Phase	N/A			
27th	0,003	0,003	0,004	0,030	0,032	0,044	Three Phase	N/A			
28th	0,003	0,002	0,002	0,027	0,025	0,026	Three Phase	N/A			
29th	0,011	0,013	0,01	0,112	0,136	0,102	Three Phase	N/A			
30th	0,003	0,003	0,003	0,027	0,028	0,028	Three Phase	N/A			
31th	0,01	0,01	0,008	0,110	0,101	0,087	Three Phase	N/A N/A			
32th 33th	0,002	0,002 0,003	0,002	0,024 0,038	0,025 0,035	0,026	Three Phase				
34th	0,004	0,003	0,006 0,002	0,038	0,035	0,066 0,025	Three Phase	N/A N/A			
34th 35th	0,002	0,002	0,002	0,024	0,025	0,025	Three Phase Three Phase	N/A N/A			
36th	0,003	0,003	0,000	0,100	0,030	0,030	Three Phase	N/A			
37th	0,003	0,003	0,003	0,029	0,031	0,030	Three Phase	N/A			
38th	0,000	0,009	0,000	0,000	0,089	0,081	Three Phase	N/A N/A			
39th	0,002	0,002	0,002	0,023	0,024	0,024	Three Phase	N/A			
40th	0,003	0,003	0,004	0,023	0,030	0,042	Three Phase	N/A			

Page 82 of 127

8	TABLE: 0	Current h	armonic	s emissio	n test			Р
odel: SOF	AR 20000T	L-G2						
			Norma	ıl ambient	(EN 61000)-3-12)		
				Output po				
	١	Watts (kW)					4,424 <i>i</i> 4,412 <i>i</i> 4,40	00
		Vrm s(V)				23	0,09/ 230,04/ 230	0,02
		Arms(A)					,229/ 19,180/ 19,	
			1-1				50,00	120
		equency(F					· ·	
	<u> </u>	6% output	<u> </u>	·		0,4	59%/0,518%/0,4	
Harmonics	Current Magnitude (A)				damental		Phase	Harm onic
	L1	L2	L3	L1	L2	L3		Current Limits (%)
1st	19,229	19,180	19,129				Three Phase	
2nd	0,008	0,012	0,010	0,042	0,061	0,052	Three Phase	8,000
3rd	0,013	0,043	0,038	0,069	0,226	0,199	Three Phase	21,600
4th	0,010	0,011	0,011	0,052	0,058	0,056	Three Phase	4,000
5th	0,052	0,040	0,018	0,272	0,208	0,097	Three Phase	10,700
6th	0,011	0,009	0,012	0,057	0,047	0,061	Three Phase	2,667
7th	0,028	0,040	0,024	0,144	0,211	0,124	Three Phase	7,200
8th	0,009	800,0	800,0	0,046	0,042	0,041	Three Phase	2,000
9th	0,019	0,023	0,014	0,100	0,122	0,072	Three Phase	3,800
10th	0,005	0,007	0,006	0,026	0,035	0,029	Three Phase	1,600
11th	0,022	0,038	0,035	0,115	0,200	0,184	Three Phase	3,100
12th	0,006	0,004	0,007	0,031	0,023	0,039	Three Phase	1,333
13th	0,035	0,021	0,020	0,181	0,107	0,104	Three Phase	2,000
14th	0,005	0,004	0,005	0,027	0,019	0,024	Three Phase	8,000
15th	0,005	0,023	0,021	0,026	0,120	0,109 0,018	Three Phase	N/A N/A
16th 17th	0,004 0,011	0,005 0,018	0,004 0,026	0,021 0,055	0,025 0,092	0,018	Three Phase Three Phase	N/A
18th	0,011	0,018	0,026	0,035	0,092	0,135	Three Phase	N/A N/A
19th	0,004	0,003	0,004	0,020	0,017	0,013	Three Phase	N/A
20th	0,003	0,000	0,024	0,016	0,036	0,123	Three Phase	N/A
21th	0,003	0,003	0,003	0,018	0,018	0,018	Three Phase	N/A
22th	0,003	0,003	0,003	0,015	0,033	0,030	Three Phase	N/A
23th	0,006	0,017	0,016	0,030	0,088	0,085	Three Phase	N/A
24th	0,003	0,003	0,003	0,017	0,014	0,016	Three Phase	N/A
25th	0,015	0,005	0,015	0,080	0,024	0,077	Three Phase	N/A
26th	0,003	0,003	0,003	0,015	0,016	0,015	Three Phase	N/A
27th	0,005	0,009	0,012	0,027	0,048	0,063	Three Phase	N/A
28th	0,003	0,003	0,003	0,013	0,013	0,014	Three Phase	N/A
29th	0,004	0,012	0,013	0,022	0,061	0,067	Three Phase	N/A
30th	0,003	0,002	0,003	0,013	0,013	0,013	Three Phase	N/A
31th	0,012	0,004	0,009	0,060	0,019	0,049	Three Phase	N/A
32th	0,002	0,002	0,003	0,013	0,012	0,014	Three Phase	N/A
33th	0,005	800,0	0,011	0,025	0,040	0,057	Three Phase	N/A
34th	0,003	0,003	0,003	0,014	0,014	0,014	Three Phase	N/A
35th	0,004	800,0	0,009	0,020	0,044	0,045	Three Phase	N/A
36th	0,003	0,003	0,003	0,014	0,015	0,014	Three Phase	N/A
37th	0,010	0,004	0,010	0,052	0,021	0,051	Three Phase	N/A
38th 39th	0,002 0,004	0,002 0,006	0,002 0,007	0,013 0,019	0,013 0,033	0,013 0,034	Three Phase Three Phase	N/A N/A
40th	0,004	0,000	0,007	0,019	0,033	0,034	Three Phase	N/A N/A

Page 83 of 127 Report no. 190430035GZU-001

4.8	TABLE:	Current l	narmonics	s emissio	n test			Р
Model: SOFA	R 20000T	L-G2						•
					EN 61000	-3-12)		
		Watts	·	Output por	wer 100%		6,735 <i>l</i> 6,713 <i>l</i> 6,70	<u> </u>
		Vrms					0,12/ 230,06/ 230,	
		Arms				29	,271/ 29,181/ 29,1	27
	F	requency					50,00	
	THD						17% <i>1</i> 0,462%1 0,59	
Harmonics		nt Magnitu			ndam enta		Phase	Harm onic
	L1	L2	L3	L1	L2	L3		Current Limits (%)
1st	29,271	29,181	29,126				Three Phase	
2nd	0,014	0,015	0,012	0,048	0,053	0,041	Three Phase	8,000
3rd	0,021	0,049	0,062	0,073	0,169	0,212	Three Phase	21,600
4th	0,009	0,013	0,013	0,032	0,044	0,045	Three Phase	4,000
5th 6th	0,069 0,012	0,027 0,010	0,056 0,011	0,235 0,040	0,093	0,191 0,038	Three Phase Three Phase	10,700
otn 7th	0,012	0,010	0,011	0,040	0,035 0,253	0,038	Three Phase	2,667 7,200
8th	0,008	0,010	0,002	0,026	0,233	0,213	Three Phase	2,000
9th	0,000	0,010	0,008	0,020	0,034	0,032	Three Phase	3,800
10th	0,005	0,005	0,023	0,017	0,009	0,033	Three Phase	1,600
1 1th	0,024	0,061	0,074	0,083	0,210	0,255	Three Phase	3,100
12th	0,006	0,004	0,006	0,022	0,014	0,020	Three Phase	1,333
13th	0,054	0,023	0,051	0,184	0,079	0,174	Three Phase	2,000
14th	0,005	0,005	0,007	0,018	0,018	0,024	Three Phase	8,000
15th	0,011	0,024	0,035	0,039	0,082	0,120	Three Phase	N/A
16th	0,004	0,006	0,004	0,015	0,021	0,014	Three Phase	N/A
17th	0,026	0,029	0,049	0,089	0,099	0,169	Three Phase	N/A
18th	0,005	0,005	0,003	0,016	0,017	0,011	Three Phase	N/A
19th	0,033	0,020	0,043	0,113	0,068	0,147	Three Phase	N/A
20th	0,003	0,005	0,004	0,011	0,016	0,014	Three Phase	N/A
21th	0,014	0,008	0,022	0,048	0,028	0,077	Three Phase	N/A
22th	0,004	0,004	0,003	0,013	0,015	0,011	Three Phase	N/A
23th	0,009	0,027	0,029	0,031	0,093	0,101	Three Phase	N/A
24th 25th	0,003	0,003	0,004	0,011	0,011	0,012	Three Phase	N/A N/A
25th	0,022 0,004	0,012 0,004	0,027 0,003	0,077 0,012	0,041 0,014	0,094 0,010	Three Phase	N/A
27th	0,004	0,004	0,003	0,012	0,014	0,010	Three Phase Three Phase	N/A
28th	0,008	0,003	0,018	0,020	0,031	0,001	Three Phase	N/A
29th	0,003	0,000	0,003	0,039	0,012	0,003	Three Phase	N/A
30th	0,003	0,003	0,003	0,009	0,012	0,009	Three Phase	N/A
31th	0,021	0,011	0,023	0,072	0,038	0,078	Three Phase	N/A
32th	0,003	0,003	0,003	0,009	0,011	0,009	Three Phase	N/A
33th	0,006	0,006	0,012	0,022	0,021	0,042	Three Phase	N/A
34th	0,004	0,004	0,004	0,012	0,013	0,012	Three Phase	N/A
35th	0,010	0,018	0,019	0,034	0,061	0,065	Three Phase	N/A
36th	0,003	0,003	0,003	0,010	0,011	0,009	Three Phase	N/A
37th	0,016	0,009	0,018	0,053	0,032	0,061	Three Phase	N/A
38th	0,002	0,003	0,002	0,009	0,009	0,009	Three Phase	N/A
39th	0,004	0,007	0,010	0,015	0,023	0,035	Three Phase	N/A
40th	0,002	0,002	0,002	0,009	0,008	0,008	Three Phase	N/A

Page 84 of 127 Report no. 190430035GZU-001

.8	TABLE:	Current h	narmonic	s emissio	n test			Р
Model: SOFAR 33000TL-G2								
			Norma	al ambient	(EN 61000)-3-12)		
					ower 33%	· · ·-,		
	•	Watts(kW)				3,579/3,557 <i>1</i> 3,556	
		V rm s(V)				2	30,19/229,55/230,0)5
		Arms(A)					5,552/15,495/15,46	
	Fr	equency(l	H=)			•	50,00	•
		3% outpu					08%/0,892%/0,77	20/
Harmonics				0/ af E	nd am ent al	0,5	Phase	Harmonic
marmonics		nt Magnitu					Phase	Current
	L1	L2	L3	L1	L2	L3		Limits (%)
1st	15,552	15,495	15,461	99,996	99,996	99,997	Three Phase	
2nd	0,029	0,015	0,027	0,186	0,099	0,173	Three Phase	8,000
3rd	0,037	0,046	0,063	0,235	0,297	0,408	Three Phase	21,600
4th	0,030	0,011	0,026	0,193	0,071	0,170	Three Phase	4,000
5th	0,071	0,059	0,025	0,456	0,379	0,164	Three Phase	10,700
6th	0,026	0,010	0,022	0,167	0,064	0,145	Three Phase	2,667
7th	0,055	0,064	0,034	0,353	0,413	0,221	Three Phase	7,200
8th	0,018	0,010	0,013	0,119	0,064	0,086	Three Phase	2,000
9th	0,025	0,033	0,021	0,162	0,216	0,137	Three Phase	3,800
10th	0,011	0,011	0,010	0,068	0,069	0,063	Three Phase	1,600
11th	0,027	0,051	0,030	0,175	0,328	0,192	Three Phase	3,100
12th	0,009	0,007	0,007	0,058	0,046	0,047	Three Phase	1,333
13th	0,038	0,028	0,013	0,246	0,184	0,083	Three Phase	2,000
14th	0,009	0,008	0,008	0,057	0,050	0,055	Three Phase	8,000
15th	0,012	0,026	0,024	0,077	0,170	0,154	Three Phase	N/A
16th	0,009	0,007	0,007	0,057	0,048	0,046	Three Phase	N/A
17th	0,008	0,016	0,018	0,050	0,103	0,114	Three Phase	N/A
18th	0,007	0,007	0,006	0,048	0,043	0,041	Three Phase	N/A
19th	0,015	0,008	0,014	0,096	0,050	0,094	Three Phase	N/A
20th	0,008	0,007	0,006	0,050	0,044	0,042	Three Phase	N/A
21th	0,010	0,010	0,021	0,067	0,063	0,135	Three Phase	N/A
22th	0,007	0,006	0,006	0,047	0,042	0,039	Three Phase	N/A
23th	0,009	0,011	0,012	0,055	0,069	0,075	Three Phase	N/A
24th	0,007	0,007	0,006	0,048	0,043	0,041	Three Phase	N/A N/A
25th 26th	0,010 0,007	0,008 0,007	0,011 0,007	0,063 0,048	0,050 0,043	0,068 0,043	Three Phase Three Phase	N/A N/A
27th	0,007	0,007	0,007	0,040	0,043	0,043	Three Phase	N/A
28th	0,007	0,012	0,006	0,030	0,070	0,039	Three Phase	N/A
29th	0,007	0,000	0,000	0,047	0,042	0,058	Three Phase	N/A
30th	0,007	0,007	0,006	0,046	0,042	0,038	Three Phase	N/A
31th	0,008	0,009	0,009	0,050	0,059	0,061	Three Phase	N/A
32th	0,007	0,006	0,006	0,047	0,042	0,041	Three Phase	N/A
33th	0,007	0,007	0,010	0,046	0,048	0,066	Three Phase	N/A
34th	0,007	0,007	0,006	0,048	0,042	0,039	Three Phase	N/A
35th	0,010	0,007	0,008	0,064	0,048	0,052	Three Phase	N/A
36th	0,008	0,007	0,006	0,048	0,044	0,040	Three Phase	N/A
37th	0,010	0,009	0,012	0,063	0,055	0,076	Three Phase	N/A
38th	0,008	0,007	0,006	0,049	0,044	0,040	Three Phase	N/A
39th	0,007	0,009	0,007	0,046	0,057	0,048	Three Phase	N/A
40th	0,007	0,006	0,006	0,047	0,041	0,038	Three Phase	N/A

Page 85 of 127 Report no. 190430035GZU-001

TABLE:	Current h	armonic	s emissio	n test			Р
Model: SOFAR 33000TL-G2							
		Norma)-3-12)		
١	Matterkinn	<u> </u>	Output po	ower 66%		7 28917 24217 249	
		1					n
					3		5
						·	
					0,6		
						Phase	Harmonic
L1	L2	L3	L1	L2	L3		Current Limits (%)
31,652	31,528	31,494	99,998	99,998	99,997	Three Phase	
0,036	0,029	0,031	0,114	0,092	0,098	Three Phase	8,000
0,053	0,041	0,097	0,167	0,131	0,307	Three Phase	21,600
0,037	0,015	0,032	0,115	0,048	0,101	Three Phase	4,000
0,093	0,055	0,098	0,294	0,176	0,311	Three Phase	10,700
							2,667
							7,200
							2,000
							3,800
							1,600
							3,100
							1,333 2,000
							8,000
							0,000 N/A
							N/A
							N/A
							N/A
							N/A
							N/A
							N/A
0,008	0,007	0,006	0,024	0,024	0,019	Three Phase	N/A
0,014	0,033	0,033	0,045	0,104	0,105	Three Phase	N/A
0,007	0,007	0,006	0,023	0,022	0,018	Three Phase	N/A
0,023	0,014	0,030	0,074	0,046	0,096	Three Phase	N/A
						Three Phase	N/A
			0,040		<u> </u>		N/A
<u> </u>			-				N/A
					<u> </u>		N/A
							N/A N/A
							N/A N/A
							N/A N/A
							N/A
_			_		_		N/A
		_			_		N/A
							N/A
							N/A
0,008	0,008	0,010	0,025	0,027	0,010	Three Phase	N/A
	,	0,005	1 -10-0				1 1 1 1 1 1
	Free THD* (66 Currer L1 31,652 0,036 0,053 0,037 0,093 0,025 0,082 0,011 0,061 0,061 0,007 0,024 0,009 0,016 0,008	### ### ### ### ### ### ### ### ### ##	Watts(kW) Vms(V) Arms(A) Frequency(Hz) THD* (66% output power) Current Magnitude (A) 0,036 0,029 0,031 0,036 0,029 0,031 0,037 0,015 0,032 0,037 0,015 0,032 0,093 0,055 0,098 0,025 0,011 0,024 0,082 0,111 0,093 0,014 0,016 0,059 0,035 0,026 0,011 0,029 0,011 0,029 0,011 0,029 0,011 0,029 0,011 0,029 0,011 0,009 0,007 0,061 0,029 0,079 0,092 0,011 0,009 0,007 0,061 0,023 0,060 0,007 0,006 0,007 0,008 0,007 0,008 0,007 0,008 0,007 0,008 0,007 0,008 0,007 0,008 0,007 0,006 0,033 0,025 0,008 0,007 0,006 0,003 0,007 0,006 0,003 0,007 0,006 0,003 0,007 0,006 0,001 0,007 0,006 0,001 0,007 0,006 0,001 0,007 0,006 0,001 0,007 0,006 0,001 0,007 0,006 0,001 0,007 0,006 0,001 0,007 0,006 0,001 0,007 0,006 0,001 0,007 0,006 0,001 0,007 0,006 0,001 0,007 0,006 0,001 0,007 0,006 0,001 0,007 0,006 0,001 0,007 0,006 0,001 0,007 0,006 0,005 0,011 0,007 0,006 0,005 0,011 0,007 0,006 0,005 0,011 0,007 0,006 0,005 0,011 0,007 0,006 0,005 0,011 0,007 0,006 0,001 0,001 0,	Normal ambient Output powers	Normal ambient (EN 61000	Normal ambient (EN 61000-3-12)	Normal ambient (EN 61000-3-12)

Page 86 of 127

4.8	TABLE: Current harmonics emission test							
Model: SOFA	AR 33000T	L-G2						
				ambient		1-3-12)		
				Output por	wer 100%			
		Natts(kW)					1,043/10,972/10,98	
		V mm s(V)					30,31 <i>1</i> 229,69 <i>1</i> 230,1	
		Arms(A)				47	7,951/47,773/47,72	24
	Fre	equency(H	z)				50,00	
	THD* (10	0% output	power)			0,6	33%/0,624%/0,567	7%
Harmonics		nt Magnitu		% of Fu	ndam enta		Phase	Harmonic
	L1	L2	Ľ3	L1	L2	L3		Current Limits (%)
1st	47,950	47,772	47,724	99,998	99,998	99,998	Three Phase	
2nd	0,124	0,087	0,076	0,258	0,181	0,158	Three Phase	8,000
3rd	0,057	0,054	0,094	0,120	0,113	0,197	Three Phase	21,600
4th	0,066	0,047	0,037	0,138	0,099	0,077	Three Phase	4,000
5th	0,060	0,075	0,066	0,124	0,157	0,139	Three Phase	10,700
6th	0,043	0,013	0,035	0,090	0,028	0,073	Three Phase	2,667
7th	0,178	0,198	0,114	0,371	0,415	0,240	Three Phase	7,200
8th	0,052	0,017	0,042	0,108	0,036	0,088	Three Phase	2,000
9th	0,095	0,077	0,018	0,198	0,161	0,038	Three Phase	3,800
10th	0,027	0,011 0,112	0,023	0,056 0,121	0,024	0,047 0,264	Three Phase Three Phase	1,600
11th 12th	0,058 0,019	0,112	0,126 0,012	0,039	0,235 0,021	0,264	Three Phase	3,100 1,333
13th	0,019	0,010	0,012	0,038	0,021	0,025	Three Phase	2,000
14th	0,014	0,032	0,007	0,030	0,007	0,014	Three Phase	8,000
15th	0,024	0,015	0,007	0,051	0,052	0,055	Three Phase	N/A
16th	0,017	0,012	0,008	0,035	0,025	0,016	Three Phase	N/A
17th	0,022	0,038	0,046	0,046	0,080	0,097	Three Phase	N/A
18th	0,014	0,011	0,006	0,029	0,023	0,012	Three Phase	N/A
19th	0,039	0,038	0,056	0,081	0,079	0,118	Three Phase	N/A
20th	0,009	0,007	0,007	0,018	0,015	0,014	Three Phase	N/A
21th	0,028	0,009	0,018	0,057	0,019	0,038	Three Phase	N/A
22th	0,007	0,006	0,007	0,015	0,012	0,014	Three Phase	N/A
23th	0,024	0,039	0,034	0,049	0,082	0,072	Three Phase	N/A
24th	0,007	0,006	0,005	0,014	0,012	0,011	Three Phase	N/A
25th	0,023	0,018	0,029	0,047	0,037	0,061	Three Phase	N/A
26th	0,006	0,006	0,005	0,014	0,012	0,011	Three Phase	N/A
27th 28th	0,014	0,006	0,017	0,029	0,013	0,036	Three Phase	N/A N/A
28th	0,007	0,006 0,023	0,005 0,023	0,014 0,029	0,013 0,049	0,011 0,048	Three Phase Three Phase	N/A N/A
30th	0,014	0,023	0,023	0,029	0,049	0,048	Three Phase	N/A N/A
30th	0,000	0,000	0,003	0,013	0,012	0,011	Three Phase	N/A
32th	0,006	0,026	0,025	0,043	0,042	0,030	Three Phase	N/A
33th	0,010	0,006	0,010	0,010	0,012	0,020	Three Phase	N/A
34th	0,006	0,006	0,005	0,013	0,012	0,010	Three Phase	N/A
35th	0,018	0,027	0,025	0,038	0,056	0,051	Three Phase	N/A
36th	0,006	0,006	0,005	0,013	0,012	0,010	Three Phase	N/A
37th	0,016	0,012	0,017	0,034	0,026	0,036	Three Phase	N/A
38th	0,006	0,005	0,005	0,013	0,011	0,010	Three Phase	N/A
39th	0,007	0,006	0,008	0,015	0,012	0,016	Three Phase	N/A
40th	0,006	0,005	0,005	0,013	0,011	0,010	Three Phase	N/A

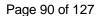
Page 87 of 127

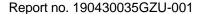
4.8	TAB	LE: Flicker							Р	
Flicker measu	urem	ent								
According to	According to EN 61000-3-3/EN 61000-3-11									
Model: SOFAR 33000TL-G2										
Value		P _{st}		P _{lt}			d _c		d _{max}	
Limit		≤ 1		≤ 0.65			≤ 3.30%		4%	
Test value	е	0.14		0.14			0.03		0.20	
Test: SOFAR 33000TL-G2										
		No.	dc[%]		d(t)[Pst			
		1	0.02	0.17		0.00	0.13			
		2	0.01	0.18		0.00	0.13			
		3	0.01	0.19		0.00	0.14			
		4	0.03	0.18		0.00	0.13			
		5 6	0.02	0.19 0.12		0.00 0.00	0.13 0.13			
		7	0.00	0.20		0.00	0.16			
		8	0.02	0.18		0.00	0.14			
		ğ	0.02	0.20		0.00	0.16			
		10	0.03	0.20		0.00	0.16			
		11	0.02	0.20		0.00	0.14			
		12	0.02	0.18	(0.00	0.14			
							0.14			
Model: SOFA	R 200	000TL-G2								
Value		P_{st}		Plt			d _c		d_{max}	
Limit		≤ 1		≤ 0.65		≤	3.30%		4%	
Test value		0.11		0.11			0.06		0.11	
			Τe	st: SOFAR 20	0000TI	L-G2				
		No.	dc[%]	dmax[%]	d(t)	[ms]	Pst			
		1	0.06	0.11		0.00	0.11			
		2 3	0.00			0.00	0.11			
		3	0.00			0.00	0.11			
		4	0.00			0.00	0.11			
		5	0.01			0.00	0.11			
		5 6 7	0.00			0.00	0.11			
			0.00			0.00	0.11			
		8 9	0.00			0.00	0.11 0.11			
		10	0.00			0.00	0.11			
		11	0.00			0.00	0.11			
		12	0.00			0.00	0.11			
							Pit			
							0.11			

Page 88 of 127

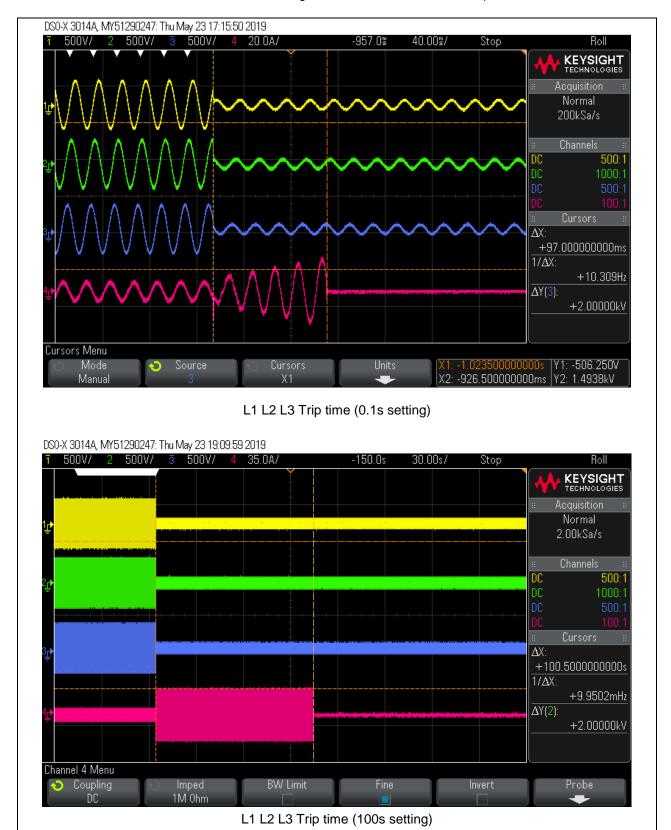
Report no. 19	90430035GZU-001
	Р

4.8	TABLE: DO	Р					
Model: SOFA							
Power level	DC current [A]			% of	nominal cu	Limit	
	R	S	Т	R	S	Т	
33%	-0.088	-0.053	-0.068	-0.297	-0.183	-0.235	±0.5%
66%	-0.087	-0.054	-0.076	-0.300	-0.186	-0.262	±0.5%
100%	-0.074	-0.054	-0.063	-0.255	-0.188	-0.217	±0.5%

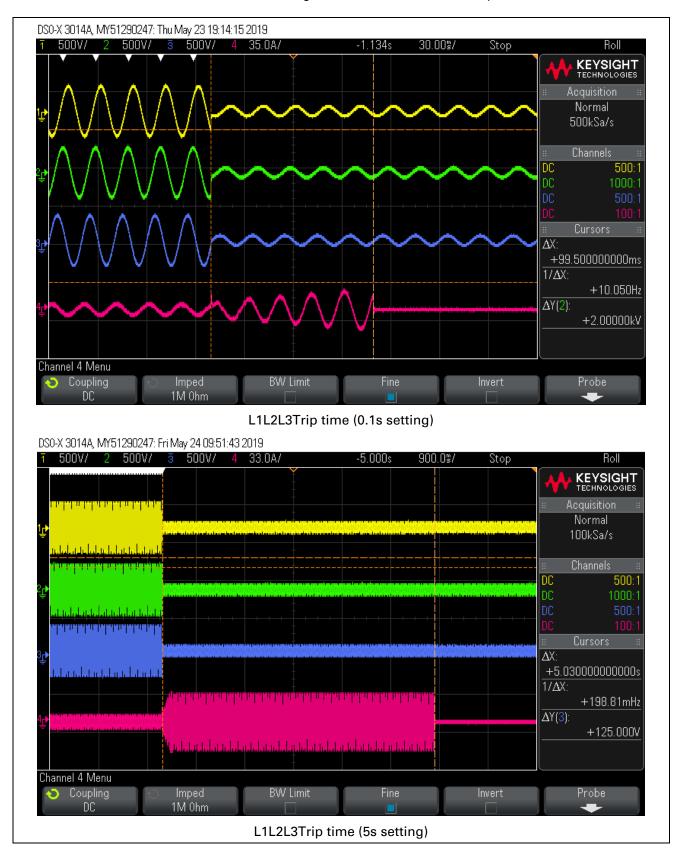

4.8	TABLE: DO	TABLE: DC injection						
Model: SOFAR 33000TL-G2								
Power level	DC current [A]			% of	nominal cu	rrent	Limit	
	R	S	Т	R	S	Т		
33%	0.078	0.031	-0.073	0.163	0.065	-0.153	±0.5%	
66%	0.060	-0.030	-0.067	0.130	-0.063	-0.140	±0.5%	
100%	0.046	-0.062	-0.077	0.096	-0.130	-0.161	±0.5%	



Page


ie 89 of 127	Poport no	190430035GZU-001
JE 09 ULIZ <i>I</i>	Report no.	190430033620-001

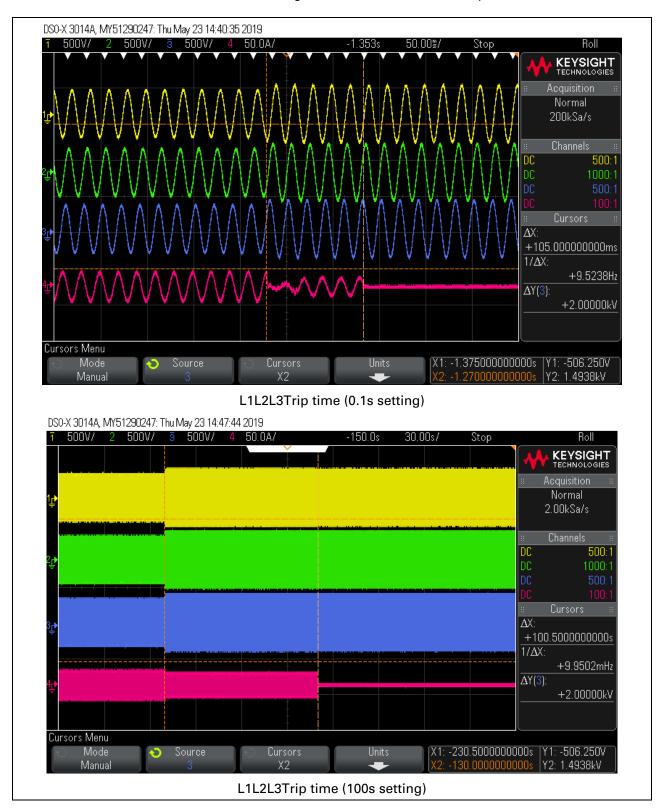
4.9.3	Table: Inte	rface protec	tion				Р	
	Undervoltag A	e threshold djustment ra		Yes	No			
	•	Config. from (0.01 Un step		Yes				
	Trip time Config. from 0.1 to 100 s (0.1 s steps)							
Parameter	Settings	Test 1	Test 2	Test 3		Limi	ts	
Trip value L1[V]	46	44.58	44.90	45.00		46±2	3	
Trip time [s]	0.1	0.092	0.098	0.107		0.1±1	0%	
Trip value L2[V]	46	44.58	44.90	45.00	46±2.3			
Trip time [s]	0.1	0.095	0.096	0.099	0.1±10%			
Trip value L3[V]	46	44.86	44.91	44.99	46±2.3			
Trip time [s]	0.1	0.095	0.096	0.103	0.1±10%			
Trip value L1L2L3[V]	46	44.95	44.90	44.92		46±2.3		
Trip time [s]	0.1	0.098	0.095	0.097		0.1±1	0%	
Parameter	Settings	Test 1	Test 2	Test 3		Limi	ts	
Trip value L1[V]	46	44.58	44.90	45.00		46±2	3	
Trip time [s]	100	100.2	100.4	100.5		100±1	0%	
Trip value L2[V]	46	44.58	44.90	45.00		46±2	3	
Trip time [s]	100	99.9	100.2	100.0		100±1	0%	
Trip value L3[V]	46	44.86	44.91	44.99	46±2.3			
Trip time [s]	100	99.6	100.2	100.5		100±1	0%	
Trip value L1L2L3[V]	46	44.95	44.90	44.92	46±2.3			
Trip time [s]	100	100.4	100.5	100.3		100±1	0%	



Page 91 of 127

Report no.	190430035GZU-001

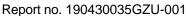
4.9.3	Table: Inte	rface protect			Р				
	A	e threshold djustment ra		Yes	No				
	Trip value	Yes							
Trip time Config. from 0.1 to 5s (0.05 s steps)						Yes			
Parameter	Settings	Test 1	Test 2	Test 3		Limits	S		
Trip value L1[V]	46	44.58	44.90	45.00		46±2.3	3		
Trip time [s]	0.1	0.099	0.101	0.103		0.1±10°	%		
Trip value L2[V]	46	44.58	44.90	45.00		46±2.3	3		
Trip time [s]	0.1	0.096	0.099	0.101		0.1±10%			
Trip value L3[V]	46	44.86	44.91	44.99	46±2.3				
Trip time [s]	0.1	0.093	0.094	0.096	0.1±10%				
Trip value L1L2L3[V]	46	44.95	44.90	44.92		46±2.3			
Trip time [s]	0.1	0.100	0.100	0.099		0.1±10 ^o	%		
Parameter	Settings	Test 1	Test 2	Test 3		Limits			
Trip value L1[V]	46	44.58	44.90	45.00		46±2.3	3		
Trip time [s]	5	5.02	5.04	5.00		5±10%	, o		
Trip value L2[V]	46	44.58	44.90	45.00		46±2.3	3		
Trip time [s]	5	5.01	5.02	5.02		5±10%	, 0		
Trip value L3[V]	46	44.86	44.91	44.99		46±2.3			
Trip time [s]	5	4.98	5.02	5.00		5±10%	,		
Trip value L1L2L3[V]	46	44.95	44.90	44.92		46±2.3	3		
Trip time [s]	5	5.02	5.03	5.00		5±10%	,		



Page 93 of 127

Report no.	190430035GZU-00	•

4.9.3	Table: Inte	Table: Interface protection								
	Ŭ	e threshold djustment ra	stage 1 [59 > ange		Yes	No				
	Trip value	Yes								
	Trip time	Yes								
Parameter	Settings	Test 1	Test 2	Test 3		Limits				
Trip value L1[V]	276	276.06	276.11	276.12		276±2.	3			
Trip time [s]	0.1	0.098	0.101	0.104		0.1±10°	%			
Trip value L2[V]	276	276.47	276.51	276.58		276±2.	3			
Trip time [s]	0.1	0.098	0.099	0.099		0.1±10°	%			
Trip value L3[V]	276	276.19	276.34	276.41		276±2.	3			
Trip time [s]	0.1	0.095	0.095	0.104		0.1±10%				
Trip value L1L2L3[V]	276	276.28	276.33	276.38		276±2.	3			
Trip time [s]	0.1	0.101	0.103	0.105		0.1±10°	%			
Parameter	Settings	Test 1	Test 2	Test 3		Limits	•			
Trip value L1[V]	276	276.06	276.11	276.12		276±2.	3			
Trip time [s]	100	100.2	100.8	100.8		100±10	%			
Trip value L2[V]	276	276.47	276.51	276.58		276±2.	3			
Trip time [s]	100	100.4	100.6	100.8		100±10	%			
Trip value L3[V]	276	276.19	276.34	276.41		276±2.3				
Trip time [s]	100	100.6	100.8	101.5		100±10%				
Trip value L1L2L3[V]	276	276.28	276.33	276.38		276±2.3				
Trip time [s]	100	100.2	100.4	100.5		100±10	%			



Page 95 of 127

4.9.3	Table: Inte	Р								
	Overvoltage A	Yes	No							
	Trip value	Yes								
	Trip tim	Yes								
Parameter	Settings	Test 1	Test 2	Test 3		Limits				
Trip value L1[V]	299	299.78	299.80	299.80		299±2.3				
Trip time [s]	0.1	0.093	0.093	0.098		0.1±10%	•			
Trip value L2[V]	299	299.74	299.98	300.04		299±2.3				
Trip time [s]	0.1	0.100	0.092	0.093		0.1±10%				
Trip value L3[V]	299	299.78	299.94	300.04		299±2.3				
Trip time [s]	0.1	0.102	0.104	0.107		0.1±10%	•			
Trip value L1L2L3[V]	299	299.07	299.11	299.16		299±2.3				
Trip time [s]	0.1	0.98	0.99	0.104		0.1±10%	•			
Parameter	Settings	Test 1	Test 2	Test 3		Limits				
Trip value L1[V]	299	299.78	299.80	299.80		299±2.3				
Trip time [s]	5	5.04	5.04	5.06		5±10%				
Trip value L2[V]	299	299.74	299.98	300.04		299±2.3				
Trip time [s]	5	5.21	5.22	5.26		5±10%				
Trip value L3[V]	299	299.78	299.94	300.04		299±2.3				
Trip time [s]	5	5.01	5.02	5.04		5±10%				
Trip value L1L2L3[V]	299	299.07	299.11	299.16		299±2.3				
Trip time [s]	5	5.03	5.04	5.06		5±10%				

+2.00000kV

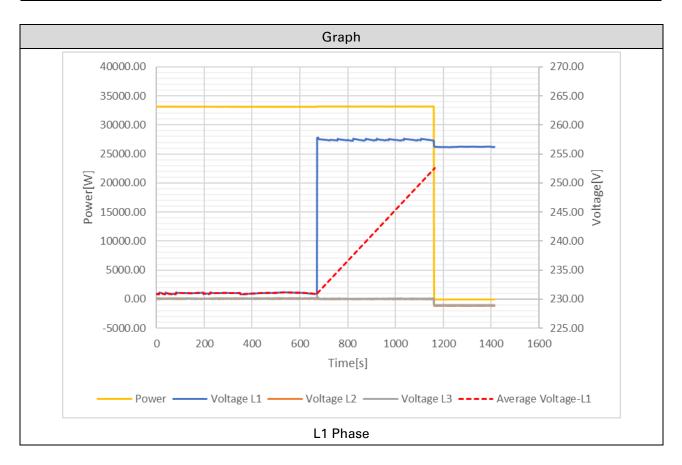
Y2: 1.4938kV

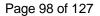
X1: -11.52000000000s |Y1: -506.250V

L1L2L3 Trip time (5s setting)

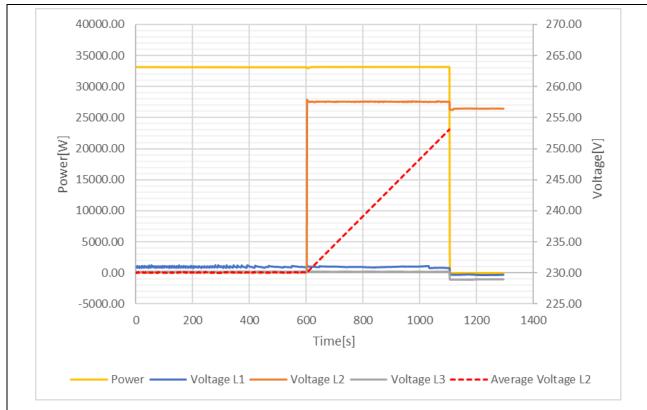
Cursors Menu Mode

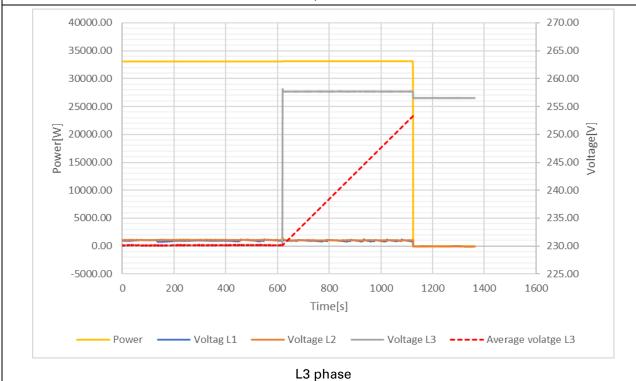
Manual


Source


Page 97 of 127

Report no.	. 190430035GZU-001
------------	--------------------


4.9.3	Table: Interface protection									
	Overvolta		Yes	No						
Trip value Config. from 1.0 to 1.15Un (0.01 Un steps)						Yes				
Trip time Config≤ 3s not adjustable Time delay setting = 0 ms						Yes				
Parameter	Settings	Test 1	Test 2	Test 3		Limits				
Trip value L1[V]	253	252.60	252.66	252.66		253±2.3				
Trip time [s]	≤ 603s	491	496	496		≤ 603s				
Trip value L2[V]	253	253.09	253.13	253.13		253±2.3	3			
Trip time [s]	≤ 603s	503	504	504		≤ 603s				
Trip value L3[V]	253	253.29	253.47	253.48		253±2.3				
Trip time [s]	≤ 603s	505	507	507		≤ 603s				
Trip value L1L2L3[V]	253	252.75	252.79	252.79		253±2.3				
Trip time [s]	≤ 603s	497	485	485		≤ 603s				



Report no. 190430035GZU-001

L2 phase

Page 99 of 127

Page 100 of 127

4.9.3	Table: Interface protection									
	Underfreque	Yes	No							
	4									
	Trip value	Yes								
		(0.1Hz step	s)							
	Trip tim	Yes								
		(0.1s steps	s)							
it may be re	quired to have b	ige	Yes							
This protecti		range from 0. tages of less t		n.it is inhibited	for	Yes				
Parameter	Settings	Test 1	Test 2	Test 3		Limits				
Trip value [Hz]	47.0	46.96	46.98	47.01		47.0±0.05				
Trip time [s]	0.1	0.100	0.101	0.101		0.1±10%				
Parameter	Settings	Test 1	Test 2	Test 3		Limits				
Trip value [Hz]	47.0	46.96	46.98	47.01		47.0±0.05				
Trip time [s]	100	100.8	100.0	101.5		100±10%				

Page 102 of 127

4.9.3	Table: Interface protection									
	•	ncy threshol		<<]		Yes	No			
	Trip value	Yes ·								
Trip time Config. from 0.1 to 5s (0.05s steps)						Yes				
it may be re	quired to have b	ige	ge Yes							
This protecti		range from 0. tages of less t		n.it is inhibited	for	Yes				
Parameter	Settings	Test 1	Test 2	Test 3		Limits				
Trip value [Hz]	47.0	46.96	46.98	47.01		47.0±0.0	5			
Trip time [s]	0.1	0.091	0.097	0.097		0.1±10%				
Parameter	Settings	Test 1	Test 2	Test 3		Limits				
Trip value [Hz]	47.0	46.96	46.98	47.01		47.0±0.05				
Trip time [s]	5	5.03	5.03	5.06		5±10%				



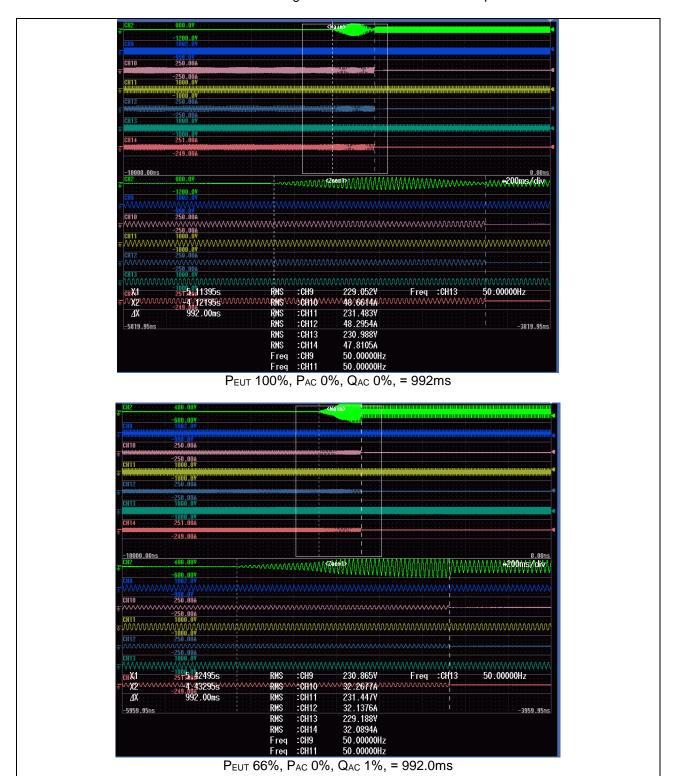
Page 104 of 127

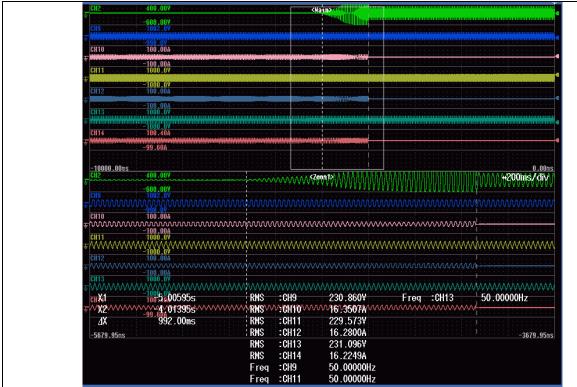
100	<u> </u>						P			
4.9.3	Table: Interface protection									
	Overfreque		Yes	No						
		163	NO							
	Trip value	Config. from	50.0 to 52.0Hz	Z		Yes				
		(0.1Hz step	s)							
	Trip tim	e Config. from				Yes				
		(0.1s steps	<u> </u>							
it may be re	quired to have b	age	Yes							
This protecti		range from 0. tages of less t		n.it is inhibited	for	Yes				
Parameter	Settings	Test 1	Test 2	Test 3		Limits				
Trip value [Hz]	52.0	52.02	52.03	52.04		52.0±0.0	5			
Trip time [s]	0.1	0.096	0.105	0.106		0.1±10%				
Parameter	Settings	Test 1	Test 2	Test 3		Limits				
Trip value [Hz]	52.0	52.02	52.03	52.04		52.0±0.05				
Trip time [s]	100	100.4	100.6	101.0		100±109	6			

Page 106 of 127

4.9.3	Table: Inter		Р							
	Overfreque	Voc	Na							
		Yes	No							
	Trip value	Config. from	50.0 to 52.0H	Z		Yes				
		(0.1Hz step	s)							
	Trip tir	ne Config. fro	m 0.1 to 5s			Yes				
		(0.05s step	s)							
it may be re	quired to have b	ge	Yes							
This protecti		range from 0. tages of less t		n.it is inhibited	for	Yes				
Parameter	Settings	Test 1	Test 2	Test 3		Limits				
Trip value [Hz]	52.0	52.02	52.03	52.04		52.0±0.05				
Trip time [s]	0.1	0.094	0.098	0.107		0.1±10%				
Parameter	Settings	Test 1	Test 2	Test 3		Limits				
Trip value [Hz]	52.0	52.02	52.03	52.04		52.0±0.05				
Trip time [s]	5	5.06	5.06	5.08		5±10%				

Page 108 of 127


Report no. 190430035GZU-001


4.9.4.2	9.4.2 Table: Islanding							Р				
No.	PEUT ⁷ (% of EU ⁷ rating	Ioad (%	PAC ²⁾ (% of nominal)	QAC ³⁾ (% of nominal)	Run on time (ms)	PEUT (KW)	Actual Qf	VDC		Rem	arks	,4)
1	100	100	0	0	992.0	33.74	1.00	850	Tes	t A	at	BL
2	66	66	0	0	779.0	21.96	1.00	600	Tes	t B	at	BL
3	33	33	0	0	930.0	11.38	1.00	300	Tes	t C	at	BL
4	100	100	-5	-5	523.0	33.74	0.98	850	Tes	t A	at	IB
5	100	100	-5	0	663.0	33.74	0.95	850	Tes	t A	at	IB
6	100	100	-5	5	637.0	33.74	0.93	850	Tes	t A	at	IB
7	100	100	0	-5	956.0	33.74	1.03	850	Tes	t A	at	IB
8	100	100	0	5	534.0	33.75	0.97	850	Tes	t A	at	IB
9	100	100	5	-5	557.0	33.74	1.02	850	Tes	t A	at	IB
10	100	100	5	0	951.0	33.74	1.08	850	Tes	t A	at	IB
11	100	100	5	5	695.0	33.74	1.04	850	Tes	t A	at	IB
12	66	66	0	-5	854.0	21.96	1.02	600	Tes	t B	at	IB
13	66	66	0	-4	876.0	21.96	1.02	600	Tes	t B	at	IB
14	66	66	0	-3	887.0	21.96	1.02	600	Tes	t B	at	IB
15	66	66	0	-2	972.0	21.96	1.01	600	Tes	t B	at	IB
16	66	66	0	-1	630.0	21.96	1.01	600	Tes	t B	at	IB
17	66	66	0	1	992.0	21.96	0.99	600	Tes	t B	at	IB
18	66	66	0	2	903.0	21.96	0.99	600	Tes	t B	at	IB
19	66	66	0	3	979.0	21.96	0.98	600	Tes	t B	at	IB
20	66	66	0	4	985.0	21.96	0.98	600	Tes	t B	at	IB
21	66	66	0	5	946.0	21.96	0.97	600	Tes	t B	at	IB
22	33	33	0	-5	916.0	11.38	1.03	300	Tes	t C	at	ΙB
23	33	33	0	-4	930.0	11.38	1.03	300	Tes	t C	at	ΙB
24	33	33	0	-3	905.0	11.38	1.02	300	Tes	t C	at	ΙB
25	33	33	0	-2	946.0	11.38	1.01	300	Tes	t C	at	ΙB
26	33	33	0	-1	836.0	11.38	1.01	300	Tes	t C	at	IB
27	33	33	0	1	992.0	11.38	0.99	300	Tes	t C	at	IB
28	33	33	0	2	984.0	11.38	0.99	300	Tes	t C	at	IB
29	33	33	0	3	943.0	11.38	0.99	300	Tes	t C	at	ΙB
30	33	33	0	4	953.0	11.38	0.98	300	Tes	t C	at	IB
31	33	33	0	5	950.0	11.38	0.98	300	Tes	t C	at	IB

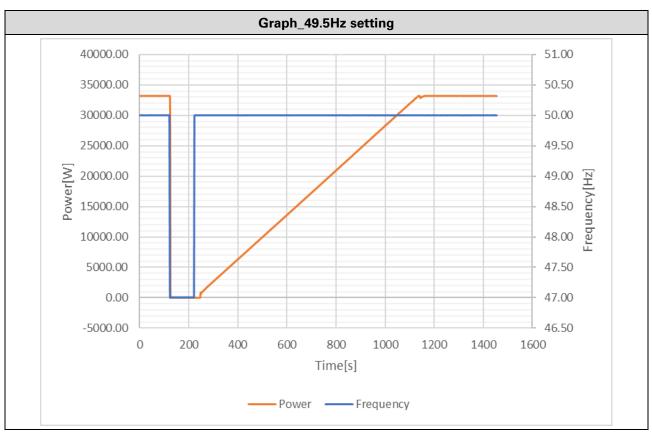
Remark:

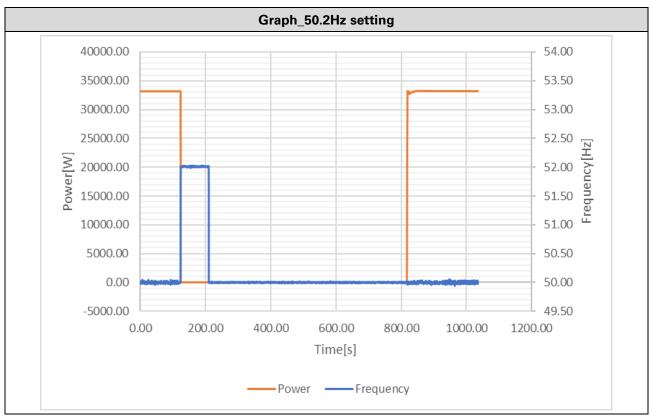
- 1) PEUT: EUT output power
- ²⁾ PAC: Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0% test condition value.
- ³⁾ QAC: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0% test condition value.
- ⁴⁾ BL: Balance condition, IB: Imbalance condition.
- *Note: test condition A (100%): If any of the recorded run-on times are longer than the one recorded for the rated balance condition, i.e. test procedure 6.1 f), then the non-shaded parameter combinations (no.32~47) also require testing.

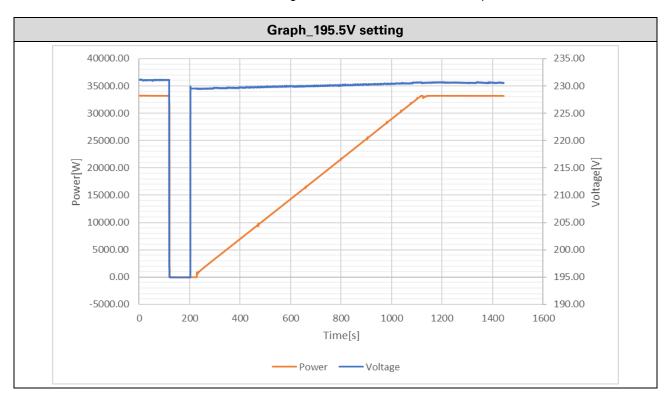
PEUT 33%, PAC 0%, QAC 1%, = 992.0ms

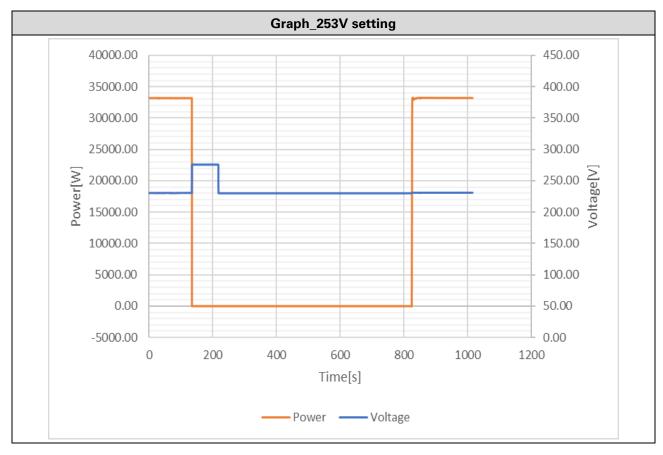
Note: CH10,CH12,CH14 denotes current of EUT; CH2 denotes Voltage of signal (the signal from switch), CH9,CH11,CH13 denotes Voltage of Grid

Page 111 of 127


je 111 of 127	Report no. 190430035GZU-001


4.10.2		Р						
Table 3 — Automatic reconnection after tripping								
Parameter Range Default setting								
Lower free	quency	47,0Hz – 50,0Hz	49,5Hz					
Upper free	quency	50,0Hz - 52,0Hz	50,2Hz					
Lower volt	age	50% — 100%Un	85 % Un					
Upper volt	age	100% – 120% U _n	110 % Un					
Observation	on time	10s – 600s	60s					
Active power increase gradient		6% – 3000%/min	10%/min					


Test sequence after trip	connection	connection allowed	Observation time (s)	Power gradient after connection	
Step a)	47.0Hz – 50.0Hz adjustable <47.0Hz setting	No			
Step b)	47.0Hz – 50.0Hz ≥49.50Hz setting	Yes	10s setting Measured: 24s	6%Pn/min setting Measured:6.09% Pn/min	
Step c)	50.0Hz – 52.0Hz adjustable >52.0Hz setting	No	No		
Step d)	50.0Hz – 52.0Hz adjustable ≤50.2Hz setting	Yes	600s setting Measured:607s	3000%Pn/min setting Measured:2937 %Pn/min	
Step e)	115V – 230V adjustable <195.5V setting	No			
Step f)	115V – 230V adjustable ≥195.5V setting	Yes	10s setting Measured:24s	6%Pn/min setting Measured:6.61% Pn/min	
Step g)	230V – 276V adjustable >253V setting	No			
Step h)	230V – 276V adjustable ≤253V setting	Yes	600s setting Measured:606.6s	3000%Pn/min setting Measured:2817 %Pn/min	



Page 112 of 127

Observation time

Active power increase gradient

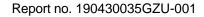
Page 114 of 127

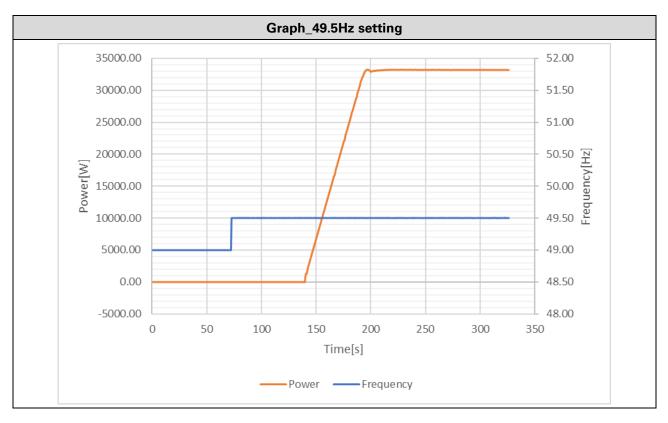
Report no. 190430035GZU-001

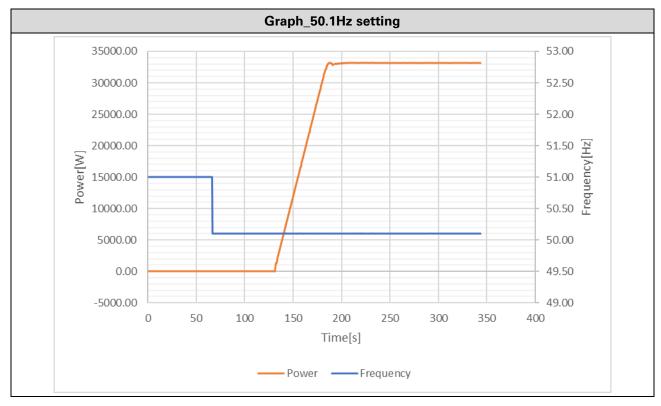
60s

disabled

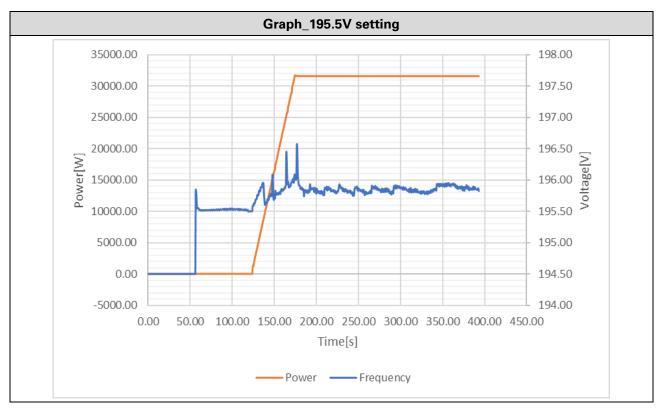
4	1.10.3 Table: Starting to generate electrical power P								
	Table 4 — Starting to generate electrical power								
	Parameter Range Default setting								
	Lower freq	luency	47,0Hz – 50,0Hz	49,5Hz					
	Upper freq	luency	50,0Hz - 52,0Hz	50,1Hz					
	Lower volt	age	50% – 100% Un	85 % Un					
	Upper volt	age	100% – 120% Un	110 % U _n					


10s - 600s

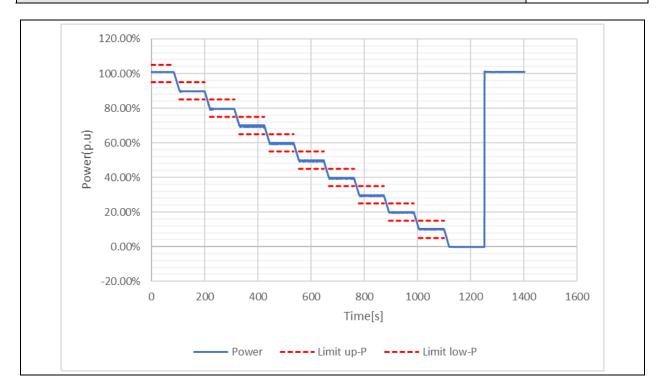

6% - 3000%/min

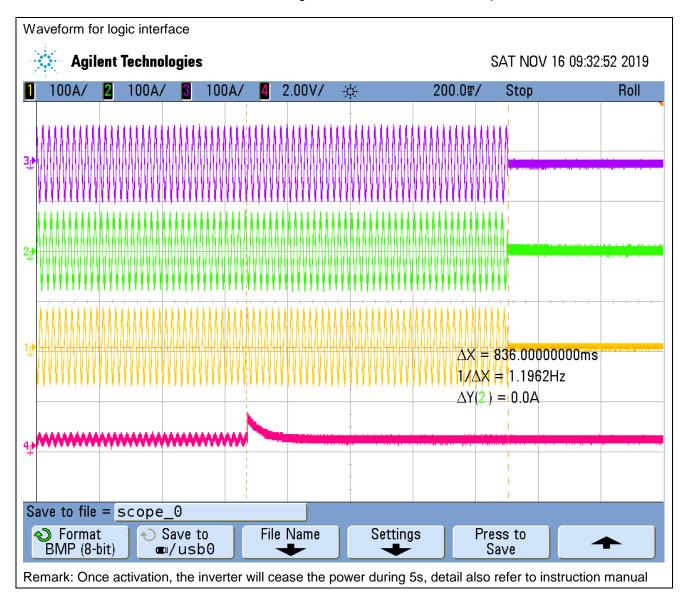

Test sequence after trip	connection	connection allowed	Observation time (s)	Power gradient after connection
Step a)	47.0Hz – 50.0Hz adjustable <49.5Hz setting	No		
Step b)	47.0Hz – 50.0Hz ≥49.5Hz setting	Yes	60s setting Measured: 67.5s	100%Pn/min setting Measured:103% Pn/min
Step c)	50.0Hz – 52.0Hz adjustable >50.1Hz setting	No		
Step d)	50.0Hz – 52.0Hz adjustable ≤50.1Hz setting	Yes	60s setting Measured:64.5s	100%Pn/min setting Measured:103% Pn/min
Step e)	115V – 230V adjustable <195.5V setting	No		
Step f)	115V – 230V adjustable ≥195.5V setting	Yes	60s setting Measured: 67.0s	100%Pn/min setting Measured:110% Pn/min
Step g)	230V – 276V adjustable >253V setting	No		
Step h)	230V – 276V adjustable ≤253V setting	Yes	60s setting Measured:69.5s	100%Pn/min setting Measured:106% Pn/min

Page 115 of 127



Page 116 of 127





4.11	1.11 Table: Active power reduction by setpoint and Ceasing active power (Logic interface)				oower		Р			
String	1	U _{DC} =	800 \	/dc	dc Uac = Un 230 Vac Pen		P _{Emax}	(KW)	33.0	
1 min mean value P/Pn			Pmea	sured (%)	ΔPmeasured (%)		(%)		Limit	
		Psetpoint (%)								[%]
		100%		1	00.88	C).88			±5%
		90%		8	9.75	-(0.25		±5%	
		80%		79.61		-0.39			±5%	
		70%		70.01		0.01			±5%	
		60%		5	9.88	-0.12			±5%	
		50%		4	9.79	-0.21				±5%
		40%		3	9.73	-0.27				±5%
		30%		29.69		-0.31			±5%	
20%			19.93		-0.07			±5%		
10%				10.27 0.27					±5%	
The power gradient for increasing and reducing (%Pn/s)									0.50%Pn/s	
Time for Logic interface (at input port) activated									0.836s	

Page 118 of 127

Total Q	uality. Assured.			Pa	ge 119 of	127			Report no. 190430035	GZU-001		
4.13	TABLE: Single fault tolerance									Р		
	ambient temperature (°C) :						25					
		mode	el/type of p	ower supply	:			PV s	simulator			
No.	componen	t No.	fault	test voltage (V)	test time	fuse No.	fus curren		result			
1.	XLC2 Pin 2 to 3		Short	850	10 min				Inverter operated norm No damaged.No hazar	-		
2.	RB 137		Open	850	10 min						Inverter disconnected find immediately. Error message:" The grid vo error". No damaged.No hazards.	ltage
3.	RB 139		Short	850	10 min				Inverter disconnected find immediately. Error message:" The grid vo error". No damaged.No hazards.	Itage		
4.	RB 131		Open	850	10 min				Inverter disconnected from grid immediately. Error message:" The grid voltage error". No damaged.No hazards.			
5.	RB 122		Open	850	10 min				Inverter disconnected to grid immediately. Error message:" The grid vo error". No damaged. No hazards.	Itage		
6.	RB 110		Short	850	10 min				Inverter disconnected find immediately. Error message:" The grid vo error". No damaged.No hazards.	Itage		
7.	RB 96		Short	850	10 min				Inverter disconnected f grid immediately. Error message:"GFCI error". damaged.No hazard.	,		
8.	RB 11		Open	850	10 min				Inverter disconnected t grid immediately. Error message:"GFCI error". damaged.No hazard.			
9.	RB 8		Short	850	10 min				grid immediatel message:"GFC		Inverter disconnected f grid immediately. Error message:"GFCI error". damaged.No hazard.	
10.	UB1 PIN5 to	6	Short	850	10 min				Inverter disconnected figrid immediately. Error message:"GFCI error".damaged.No hazard.	,		

Page 120 of 127

11.	RB 23	Short	850	10 min		 Inverter disconnected from grid immediately. Error message:"GFCI error". No
12.	QD1 PIN1 to 2	Short	850	10 min		 damaged.No hazard. Inverter disconnected from grid immediately. Error message:"The DCI overcurrent". No
13.	XLC2 PIN1 to 2	Short	850	10 min		 damaged.No hazard. Inverter disconnected from grid immediately. Error message:"The communication error". No damaged.No hazard.
14.	DC 71	Short	850	10 min		 Inverter disconnected from grid immediately. Error message:"The communication error". No damaged.No hazard.
15.	U13 PIN2 to 3	Short	850	10 min		 Inverter disconnected from grid immediately. Error message:"The communication error". No damaged.No hazard.
16.	XLC1 PIN1 to 2	Short	850	10 min		 Inverter did not start-up. Error message:"The SPI error"No damage.No hazard.
17.	RC6	Short	850	10 min	-	 Inverter disconnected from grid immediately. Error message:" The grid voltage error". No damaged.No hazards.
18.	RC19	Short	850	10 min	ł	 Inverter disconnected from grid immediately. Error message:" The grid voltage error". No damaged.No hazards.
19.	UC627 PIN2 to 3	Short	850	10 min	1	 Inverter disconnected from grid immediately. Error message:" The grid voltage error". No damaged.No hazards.
20.	UC637 PIN12 to 13	Short	850	10 min		 Inverter disconnected from grid immediately. Error message:"GFCI error". No damaged.No hazard.
21.	RC 167	Short before start-up	850	10 min		 Inverter did not start- up.Error message:"The ISO error"No damage.No hazard.
22.	RC 98	Short before start-up	850	10 min		 Inverter did not start- up.Error message:"The ISO error"No damage.No hazard.

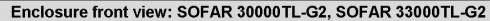
Page 121 of 127

Report no. 190430035GZU-001

Supplement:

s-c: short-circuited, o-c: open-circuited, o-l: overload

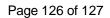
Appended photos



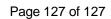




Enclosure rear view: SOFAR 30000TL-G2, SOFAR 33000TL-G2



Page 125 of 127



Enclosure terminal view: SOFAR 30000TL-G2, SOFAR 33000TL-G2

Internal view: SOFAR 20000TL-G2

(End of report)